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dominated by the viscous shear stresses when m8. I U _ < ( = 10) and by the acoustic components 

when m8. I U _ > ( = 10). For the point frequency spectrum, the most recently published model by 

Smol'yakov (2000) is shown to be the most accurate. Using Smol'yakov's (2000) point frequency 
model in conjunction with the normalized wavevector-frequency spectrum (normalized by the 
point frequency spectrum) of either the Modified Corcos or the Combined Chase model, pressure 
spectra are predicted with reasonable accuracy up to 20 kHz measured by hydrophones from 0.1-
inch to l-inch diameter flush mounted on various buoyancy propelled vehicles. In an analysis 
using finite-element structural models, cross-spectra are the most convenient form of forcing 
functions. In this case, the Modified Corcos cross-spectral density function is recommended since 
no known cross-spectral density function can be obtained to express the inverse Fourier transform 
of the Combined Chase wavevector-frequency spectrum. The Modified Corcos cross-spectrum is 
simple and in good agreement with the Combined Chase spectrum in a broad range of subsonic 
wavenumbers. 
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1.0 INTRODUCTION 

For a ground vehicle (in air) and a submerged vehicle (in water), the turbulent boundary layer 
(TBL) flow on its surface is essentially  incompressible flow because the Mach number, M, of a 
ground vehicle is about one-tenth while for a submerged vehicle it 's about one-hundredth. The 
direct aero- or hydro-acoustic radiation from a smooth vehicle body in the equilibrium flow 
region is believed to be small since the efficiency with which turbulence energy is converted to 
radiated sound is proportional to the fifth power of Mach number. The near field pressure 
fluctuations beneath a TBL, the pseudo sound, however, are intense. They feed energy into a 
structure and result in structural vibrations. The subsonic vibratory energy may subsequently 
convert into sound due to scattering by structural discontinuities such as rib-stiffeners, joints, 
frames, and bulkheads, etc. In a shell structure, sound may also radiate directly from the 
acoustically efficient membrane and shear wave vibrations.  

This report is the first of a series of reports to document the result of recent research on modeling 
the forcing function and predicting the flow-induced vibration and noise from a submerged 
vehicle body. This work was funded by the Office of Naval Research (ONR Code 333, Dr. Kam, 
Ng, the Scientific Officer) under the Torpedo Stealth Technology Program (Contract No. 
N00014-00-0058-17), from FY1999 to FY2001 .  

Analyses of the vibroacoustic response of a structure to the stochastic loading b y  TBL pressure 
fluctuations have been investigated extensively over the past forty years. Classical analyses were 
focused on the flow-induced vibrations of infinite plates and finite flat panels (Powel l , 1958; 
Davies, 197 1 ;  Blake, 1986). The TBL forcing function is commonly  expressed as the second 
moment of statistics of the pressure field, the space-time correlation function, or its Fourier 
conjugate, the wavevector-frequency spectrum. The partial (temporal) Fourier transform of the 
space-time correlation function, the cross-spectral density function, is also frequently used. For 
an infinite plate, analyses were performed in the wavenumber-frequency domain via the spatial 
temporal Fourier transforms of both the forcing function and the structural impulse response 
function. For a finite panel, analytical solutions are usually obtained via the eigenfunction (or 
modal) expansion method. The modal force auto- and cross-spectra can be calculated either 
directly from the integration of the triple product of the TBL cross-spectral density function and 
two eigenfunctions each of which specifies the generalized displacements at two separated points 
of the panel ,  or from a wavenumber-frequency analysis using the wavevector-frequency 
spectrum and the spatial Fourier transform of the eigenfunctions. 

A submerged vehicle body is most l ikely a cylindrical body that includes several segments of 
rib-stiffened shells, elastic joints, appendages, internal machinery and its support structures. It is 
difficult for analytical models to account for the details of these complexities. Using Finite
element structural models created by commercial computer software, such as the SARA-2D or 
3D code, is more tractable. When finite element models are used, the forced response can be 
calculated directly from the frequency response function of structures and the TBL cross-spectral 
density function. With this application in mind, this effort is not only focused on the wavevector
frequency spectra but also on the cross-spectral density function. 
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A recent comparison of models for the wavenumber-frequency spectrum of turbulent boundary 
layer pressures was published by Graham ( 1997). His work focused on the pressure fields of 
airframes at subsonic flows. A broad general overview and some reflection on forty years of 
research of the subject were given by Bull ( 1996). The purpose of this work is, however, to focus 
on a critical assessment of the various wavevector-frequency spectral models as well as the 
corresponding cross-spectral density function models for marine structures. A theoretical 
overview on turbulence-structure interactions and the mechanisms that cause the low
wavenumber spectra are discussed in great detail .  A few prospective models have been evaluated 
with respect to their consistency with theory and data. Eventually, a model is selected that 
reflects the current state-of-the-art. A limited verification of the model has been provided by 
comparing the analytical results using the proposed forcing function model with the hydrophone 
data reported by Haddle and Skudrzyk ( 1969) and Abarbanel, Katz, and Cembrola ( 1994) from 
buoyancy propelled test models. The agreement between the predicted values and measured data 
are reasonably good. 

Due to the rather limited available data, the model is not presented as having been thoroughly 
validated. However, this model is presented to the marine acoustics community for further 
validation, or refutation, with the data that may be available to the broader community. In the 
mean time, the authors will also continue to examine the model with new data obtained in future 
experiments. 

2.0 TURBULENCE-STRUCTURE INTERACTIONS 

In the field of vibration and acoustics where a structure is exposed to turbulent boundary layer 
flows, the common interest is to know the time history or the frequency spectrum of the vibration 
and noise. Turbulent pressures on the surface of the structure are unrepeatable and are randomly 
fluctuating signals both in time and space, but structures have rather well behaved spatial and 
temporal characteristics. In highly subsonic flow, the predominant spatial scales of the wall 
pressure fluctuations are extremely small and the pressures measured by a finite sensor vary with 
the size and shape of the sensor. Structural wave scales are usuall y  much larger than the 
predominant TBL scales. In an infinite homogeneous plate beneath a homogeneous TBL flow, 
the predominant small scale convective pressures will produce no net force to excite the larger 
scale plate bending waves. Plate bending wave vibrations can only be excited by the TBL 
pressure components of the matching scales. These are the so-called low-wavenumber 
components of the TBL pressures, which are believed two to several orders of magnitude smaller 
than the predominant higher wavenumber convective components. Understanding the generating 
mechanisms and quantifying the levels of the low-wavenumber TBL wall pressure components 
have progressed rather slowly during the past four decades because of measurement complexities 
and theoretical controversies (Blake, 1 986). Structural response may be expressed as a 
summation of certain modes, which lower order modal length scales are of the order the 
dimension of the structure. At any instance of time, the distributed fluctuating pressures produce 
a net force on the structure, which may be expressed as a summation of a number of individual 
modal forces. At this point, it may be worthwhile to give a brief overview of how the modal 
forces are determined and handled in the analysis involved with a stochastic force field. The 
purpose of this discussion is to provide some justification and rational on reaching the 
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recommended model, which is dramatical ly different from the well  known Corcos model 
( Corcos, 1963). 

Based on classic analyses, the governing equations of a homogeneous planar vibrator can be 
written as follows: 

az 
m -2 w(x,t) + Lw(x,t) = p(x,t) 

ar 
( 1 )  

where m i s  the mass per unit area, L i s  a linear stiffness operator, and w and p are the plate 
displacement and the external force per unit area, respectively. Both wand p are functions of 
position vector x = (x1 ,x3) and time t. In this report, we use x1 and x3 to denote the stream wise 
and spanwise coordinate ,  respectively. The solution, w(x,t), of this differential equation can be 
expressed as the following series expansion in eigenfunctions, 1//p(x), 

w(x,t) = L:a/t)l/fP(x) (2) 
JJ 

where aJ..t)'s are time dependent constants which are treated as  the genera lized coordinates in the 
function space . Eigenfunctions, 1///X) , and the corresponding eigenvalues, m� are the discrete 
sets of functions and values that satisfy the boundary conditions and 

(3) 

which is the result of substituting 1//(X,t) = 1//(X)exp( -iox) into the homogeneous part of Eq. ( 1 ). 

Substituting Eqs. (2) and (3) into Eq. ( 1 )  and multiplying both sides with the factor 1//v(x), then 
integrating a l l  terms over the surface of the plate results in, 

(4) 

and 

(5) 

where Mv is the mode mass, Fv(t) is a genera lized or modal force, and the simplicity of Eq. (4) is 
due to the orthogonality of eigenfunctions. Once the modal force is determined the modal 
response to the excitation can be calculated from Eq. (4). It is extremely important to note that 
the net excitation force as  a function of time is the instantaneously area  integrated force, as 
shown by Eq. (5). The following discussion will show the relationship between the modal force 
and the space-time correlation function. 

2.1 Modal Force, Space-time Correlation Function and Wavevector-Frequency Spectrum 

If an ensemble average is performed ( shown by the upper bars) on the product of modal forces, 
i .e . , 
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A A 

Obviously, the left-hand-side is the cross-correlation of the modal forces. In order to obtain this 
correlation function, one first needs to obtain the area integrated force shown by Eq. (5) at any 
instance of time and then proceed with the ensemble average. This is what actually happens in 
the real  physical situation. Since p(x,t) is not a deterministic variable, evaluation of Eq. (5) is 
not possible except when a statistical simulation such as the Monte Carlo method is used. 
However, after applying the standard procedure in random analysis that deterministic variables 
such as 1/f v(x) are unaffected by statistical averages in Eq. ( 6), one has 

A A 

where p(x,t) p(x', t') is by definition the space-time corre lation function of the pressure field. 
Assuming p is a stationary and homogeneous random process, then the modal force cross
correlation is only a function of a temporal shift, i .e ., Rpv(T) = F�' (t)Fv(t + T). Similarly, the 
space-time correlation function of the pressure is only a function of a spatia l  shift, ', ( separation 
distance between two points) and a temporal shift, -r. That is, 
RP(,, T) = RP(x- x', r) = p(x,t)p(x',t'). Accordingly, 

Rpv(T) = Jf Jfl/l�'(x)R/X- x',t:)llfv(x')dx'dx 
A A 

The Fourier transform of the above expression with respect to r leads to 

F:v(m) = Jfl/lp(x) JfrP(x- x',m)llfv(x')dXdx 
A A 

(7) 

where F:v(m)is the modal force cross-spectral density function which is the Fourier transform of 
the modal force cross-corre lation function, Rpv(r); and rP (,,w) is  the cross-spectra l  density 
function of the pressure fie ld which is the partial Fourier transform (with respect to ronly) of the 
space-time corre lation function, RP(,,r). 

The wavevector-frequency spectrum is the spatial and temporal Fourier transforms of the space
time correlation function and is accordingly the spatia l  Fourier transform of the cross-spectra l 
density function, i .e ., 

(8) 
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The modal force cross-spectrum can also be eva luated in the wavevector-frequency domain if 
one defines the Fourier transform of the eigenfunction in such a way that 

(9) 

where the value of 'lfv (x) must vanish outside the area of the structure .  The integration limits in 
Eq. (7) can then be extended from - oo to oo, and it is obviously equal to the integral of the 

product of 1/fp(x) and the convolution ,  J J FP(x- x',W)'Ifv(x')dx'. The Fourier transform of 

the convolution is <1> P (k, m) Sv (k) . Based on Parse val 's theorem on the integra l of the product of 

two functions, the integra l shown by Eq. (7) can be equivalently eva luated by 

( 1 0) 

The modal force auto-spectrum is then obviously, 

( 1 1 )  

which i s  the wavenumber sum of the product of two power spectra , the wavevector-frequency 
spectrum of the pressure fie ld and wavevector spectrum of the mode. 

The space-time correlation function is a real  value function which may be considered as a 3-D 
extension of the auto-correlation function in the time series analysis. In an ergodic process, an 
ensemble average may be substituted by a more tractable sample average .  For example ,  in a 
random sample of time series, the auto-corre lation function can be obtained as follows: A given 
sample function of time is multiplied by the same function shifted by a given time interval ( r); 
the average value of this product over a sufficient extent of time constitutes one point of the 
auto-correlation function of a particular shift. A complete auto-correlation function can then be 
obtained by repeating the process for a l l  values of the time sift. Similar ly, if one can obtain a 
random sample in space and time, p(x1, x3, t), the space-time corre lation function at a spatia l  and 
temporal shift , ( �1• Q, r ), can be obtained by the following averaging over a sufficient extend in 
both space and time,  i .e . ,  

( 1 2) 

When this process is repeated for al l  necessary values of ( �1• Q, r), the space-time correlation 
function can be displayed by plotting it as a function of ( �1• Q, T). The data in the original  record, 
p(x1, XJ, t), which is usua lly lengthy in time and space, can now be compressed into a much 
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shorter function of ( ��. �. T ) . This averaging process has caused the loss of detailed spatia l  and 
temporal signatures of the random sample, i .e ., one can no longer recover the original record 
using the space-time corre lation function. The original phase information is a lso lost. Like an 
auto-correlation function corresponds to a power spectrum in frequency, a space-time correlation 
function, shown in Eq. ( 1 2), corresponds to a power spectrum in wavenumber and frequency. 
The space-time corre lation function defined above can therefore be used to determine the modal 
force auto- and cross-spectra of an e lastic structure.  

The spatia l  averaging shown above is essentia l  since the net excitation force as a function of time 
is the instantaneously area integrated force [see Eqs. (5) and (6)] .  This point may be further 
exemplified as follows. Let P(k"k3,w), P(k; ,k�.w· )and <I> /k"k3,w) be the Fourier transforms 

of p(x"x3,t), p(x' ,x· .t ' ) and R( '"�3• r), respectively. The right-hand-side of Eq. ( 12) is the I 3 

convolution between p(x,_,x3,t) and p(x' ,x· ,r' ) of negative shifts. The Fourier transform of the I 3 

convolution, Eq. ( 1 2) is therefore, 

(A, T) -t oo  

or the Fourier transform of the pressures, P(k1,k3,w) and P(k' ,k�.w· ) , must be orthogonal, i .e ., I 

which means P(k"k3,w) must be orthogonal with respect to ensemble average .  This can be 
guaranteed only when both the spatia l  and temporal averaging are carried out in a sample 
average .  

We have discussed at this point the relationship between the modal force spectrum of a planar 
structure and the space-time correlation function ( or its Fourier conjugate, the wavevector
frequency spectrum). The choice to use the space-time correlation function or the wavevector
frequency spectrum in analysis may depend on personal preference or on what kinds of analyses 
are involved. For example ; when one needs to evaluate the TBL induced noise on an imbedded 
sonar array ( Blake, 1986), it would be most convenient to conduct analysis in  the wavevector
frequency domain. However, it wil l  be more convenient to use the space-time correlation 
function or the cross-spectral density function to compute the flow-induced vibration of a 
structure when a numerical model, such as  a finite-element model, is used to represent the 
structure ( Hwang, 1998; Hambric and Hwang, 2000). 

2.2 Two-Point Correlation and the Corcos Cross-Spectrum 

In order to determine the space-time correlation function discussed above, the time histories of a 
2-D array of a large number of smal l  pressure sensors must be recorded. This is not practically 
feasible .  The time averaged two-point cross-correlation function had consequently been 

1 1  



velocity fluctuations i n  turbulent flows. The mai n purpose of this measurement was to 
u nderstand the structure of turbulent flows such as the effective co nvectio n velocities and the 
average life-times of eddies of various sizes. The two-poi nt velocity co rrelation  peaks for pairs 
of values of � (streamwise separation) and r(time delay) are such that �I r=Uc is approximately 
constant and equal to the local mean velocity. This velocity is called the convection velocity. 
Early measureme nts by Wil lmarth ( 1958) revealed that the pressure field at the wall reflected 
similar behavior. Obtai ni ng the space-time correlatio n  fu nctio n  without carryi ng out spatial 
averagi ng may be justifiable based on  the Taylor hypothesis that space correlatio n  and temporal 
correlation are simply related through the convectio n velocity. It may also be argued that space 
average can be substituted as a time average i n  an ergodic process. Ge nerally  speaki ng, the two 
poi nt pressure cross-correlation is obtai ned by time averagi ng over a sufficient amou nt of time 
the product of the time history recorded at a poi nt (x1,x3, t )  and that recoded at a differe nt poi nt 
with a time shift, (x1+�J.x3+�,t+ -r): 

( 1 3) 

Whe n the above correlation  is measured with zero spatial shift, o ne obtai ns the autocorrelation 
fu nctio n, of which the Fourier transform yields the freque ncy spectrum. 

The cross-spectral de nsity fu nction, T((I'�Jim) , may be obtai ned by the Fourier transform of 

R((1 ,�3, r) with respect to T. It may also be determi ned from the filtered narrow band cross

correlation. Corcos [ 1963, 1964] used the data from narrow band cross-correlation measureme nts 
to come up with the well-know n Corcos cross-spectral density fu nction. Corcos [1964] argued 
that si nce R( (1 .�3, r) is a real fu nction, its Fourier transform with respect to time, 

-

T( (I' �3 ,m) = (1 I 21Z') J R( (I' �3, r) e -i= dr, 

must have a real part symmetric i n  mand an imagi nary part anti-symmetric i n  m. For the 
streamwise correlation (at zero lateral shift) i n  particular, the co rrelation fu nctio n  and the cross 
spectrum must be related by: 

-

R((I'O,r) = J T((I'O,m) e;=dm 
( 14) 

= [jr( (I'O ,m) j cos(mr + a) dm 

If the output of two pressure sensors separated by (�. 0) is fi ltered by two ide ntical narrow band 
filters of u nit width, the averaged (over time) value of the product of their output ROJ (�. o. r) is a 

no n-decayi ng periodic fu nction of -r, i .e. , 
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The amplitude and phase angle, a; of F(�,O,m) are therefore readily  measured. Si nce �  lr=Uc, 
the phase angle and the average translation velocity are related by a= -�Uc. In  practice, the 
narrow band space correlatio ns are ofte n measured with zero time delay, r-:0. I n  this case, the 
phase angle is simply determi ned by a= tan-1[lm T(�,O,m) I Re F(�, O,m)] (Farabee and 
Casarella, 199 1 ). Accordi ngly, whe n the trivial imagi nary term is i ncluded, Eq. ( 14) becomes, 

.. 

R((., O, r) = f{lr((1,0,m)le;�,u, }ei=dm. ( 15) 

The term i nside the bracket, { } , represe nts the cross-spectral de nsity fu nctio n. The ratio 
betwee n the amplitude of the u nit bandwidth cross-correlation, IF( (., O , m)l and the square root of 

the product of auto-spectra at (x1 ,  0) and (x1+�, 0) is the narrow band cross-correlation 
coefficie nt, 

Based o n  the data avai lable at the time (Wil lmarth and Wooldridge, 1962; Corcos, 1962), Corcos 
found that A is approximately a fu nction of �Uc only, while Uc I U .. is a weak fu nctio n of 

mo· I U .. and �I o·. Both the magnitude and the argume nt of F( (1 , O , m) are therefore a functio n  

of the similar variable �Uc. which i ndicates that the narrow band temporal and space 
co rrelation are similarly related through the convection velocity. From Eqs. ( 14) and ( 15), the 
streamwise cross-spectral de nsity fu nction is now obviously, 

( 16) 

Based on  the lateral correlation measureme nts by Wil lmarth and Wooldridge ( 1962) and 
Bakewell, et al. ( 1962), the data suggested the lateral cross-spectrum to be 

(17 ) 

and accordi ng to Eq. ( 1 5) ,  

.. 

R( 0,(3, r = 0) = f ¢JP(m)B(�3 I UJdm. 
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The lateral cross-spectrum was verified by Corcos ( 1964 ), si nce the compariso n  betwee n the 
measured and computed R( 0, ,3 , T = 0) usi ng the measured values of ¢'/W) and B(w'3 I UJ was 

excelle nt. Fi nally, Corcos assumed his well k now n cross-spectral de nsity functio n  as, 

( 1 8) 

where C is a rectangular product of A and B, i .e . ,  

In highly subso nic flow, the predomi nant spatial scales of the wall pressure fluctuatio ns are small 
and the pressures measured by a fi nite se nsor vary with the size and shape of the se nsor. The 
attenuation  of wall pressure by a fi nite size pressure transducer causes the u ncertai nty of spatial 
resolution of the pressure field. The u ncertai nty of spatial resolution also causes the u ncertai nty 
of pressure resolution i n  time. This motivated Corcos ( 1963, 1967) to i nvestigate quantitatively 
the atte nuation  of TBL wall  pressure frequency spectral de nsity as well as the cross-spectral 
de nsity by a fi nite pressure se nsor. I n  order to accomplish this, he needed a specific analytical 
model of the TBL pressure cross-spectral density function. Based o n  a careful i nspection of data 
obtai ned i n  ful ly developed pipe flow experiments avai lable at the time, Corcos ( 1963) proposed 
to express the above ge neral forms of the correlation fu nctions more specifical ly  as 

( 19) 

and 

(20) 

where a1 and � are the longitudi nal and lateral decay rates of the cohere nces, whose typical 
range of values are 0. 10-0. 1 2  and 0.7- 1 .2, respectively. 

2.3 Corcos' Wavevector-Frequency Spectrum 

The Corcos' wall pressure wavevector-frequency spectrum can be obtai ned by taki ng the spatial 
Fourier transform of Eq. ( 1 8), i .e. , 

(2 1 ) 

which results i n  

(22) 

and 
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where the wavevector, k=(k�okJ), is the Fourier conjugate of §=(;";3), and k1 = k1Uc I w and 

k3 = k3U c I w are the similarity wavenumbers or the normalized streamwise and spanwise 
wavenumbers, respectively. The wavevector-frequency spectrum is now expressed as 

2 - - - -
f/J P (w)(U c I w) f (k1 , k3 ) where f (k1 , k3 ) is a normalized dimensionless wave vector spectrum, 

i .e., f(k1 ,k3 )=<I> /kpk3,W)I[f/J/W)(Uc I W)2], which is the Fourier transform of the correlation 

function, A(w'1 IU)B(w,31Uc) exp (iw�/Uc ) , and accordi ng to Eq. (22), the i ntegrated sum of 

f(k1 ,k3) over wavevector plane, (k1 .k3) = (UJ w)\kl'k3), should be u nity. Therefore, 

f(k1 ,k3 ) indicates merely how the narrow band freque ncy de nsity is distributed over the 

wavevector plane. 

The low wave number compone nts have been ide ntified as the mai n source of the TBL excitation 
of a large structure because the high wavenumber compo nents are averaged out o n  the structural 
surface in a way similar to the attenuation  of the TBL wall pressures by a fi nite sensor. For a 
large clamped plate, the structural acceptance of TBL excitation is contributed mai nly in a 
narrow wavenumber band centered on  the plate flexural wave number which is, i n  most practical 
situations, much lower than the convective wave number. There is no clear cut definition of the 
low-wave number region; this region covers the subconvective wavenumber range usual ly within 
the range where -0.25 < klkc < 0.25, and where, kc =UJw, is the co nvective wavenumber. As 
shown in Fig. 1 ,  the Corcos' wavevector-freque ncy spectrum is predominantly convective and 
the low-wavenumber co ntents are extremely  low; they are not observable when plotted in li near 
scales. When the spectrum is plotted i n  a logarithmic scale, however, the low-wavenumber 
region  of the spectrum is now graphically  observable and varyi ng slowly (wave number white) i n  
the region. 

Since a12<< 1 ,  Corcos's <l>p (k ,w) at zero and co nvective wave numbers, is then approximately, 

(24) 

The effects of convection and the decay of turbulence on the wavenumber-frequency spectrum 
(Keith and Abraham, 1997) is then obvious. The zero wavenumber spectrum is approximately 
a1 2 (::::: 0.0 1) times that at the convective ridge and therefore it is about 20 dB lower than the 

convective ridge level. However, this low-wavenumber level is believed to be about 20 dB 
higher than experime ntal values. The supersonic regio n of the spectrum ( lkl I kc << 1 )  is a small 

region withi n the low-wave number region and could be the source of sound radiatio n  co ntributed 
by the fluctuating dipoles according to Curle ( 1955). The high level low-wavenumber white 
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spec trum discussed above may i ndicate a sig nifica nt sou nd radia tion from a very low speed 
turbule nt bou ndary layer flow over a rigid surface eve n though the flow is virtual ly 
i ncompressible. However, many well k now n theories i ndicate the contrary. For example, 
Kraich nan ( 1 955), Phi l lips ( 1 955) and Chase ( 1 980, 1 987) have show n that  the low-wave number 
pressure spec trum of an i ncompressible turbule nt flow mus t vanish a t  zero wave number; i .e. ,  
<l>p(k,w) 7 0 as k,-70 . This theore tical resul t  also has a severe implication: an i ncompressible 
turbule nt bou ndary layer flow over an i nfi ni tely large smoo th rigid plate will exert no ne t normal 
fluc tuati ng force on  that plate. 

The Corcos cross-spec tral de nsi ty fu nc tion show n by Eqs, ( 1 8-20) was fi tted wi th measured da ta 
wi thi n the range, 0.7w o· I Uc < w�1 I Uc < 10 . There is no data avai lable for � < 0.7 5• and 

�� > 10Uc I w. The analysis co nduc ted by Corcos for the evalua tion of the fi ni te size transducer 
atte nuation i nvolved double area i ntegrals of the produc t of the cross-spec tral densi ty fu nc tion 
and the two transducer respo nse kernels over the transducer surface. Each respo nse kernel relates 
the area-averaged ou tpu t of the transducer caused by a u ni t  pressure at a give n poi nt of the 
transducer. Usi ng the above cross spec tral de nsi ty fu nc tions was sa tisfac tory for a small se nsor. 
For a large se nsor such as a rigid pis ton, the evaluation of the i ntegrals mus t be carried ou t over 
large values of f-:(�1 ,�3). In this case, Corcos poi nted ou t tha t  usi ng Eqs. ( 1 8-20) is no t ful ly 
jus tifiable and po te ntial ly i naccura te, because the cohere nce for such large spa tial separa tion is 
no t know n. For example, for a circular pis ton  of 1 me ter diame ter, the required i nformation abou t 
the correlation mus t be valid for �1 as large as 1 me ter. The da ta available for �1, however, are 
Jess than 0. 1 6  me ter (= lOUr I w )  at 1000 Hz whe n Uc =10 m/s. I n  addi tion  there is also a lack of 

correlation i nformation whe n the longi tudi nal separa tio n is small ,  say �� < 0.7 5•. 
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Figure 1 .  Corcos' s  Normalized Wavevec tor Spec trum Plo tted i n  Li near and 
Logari thmic Scales 

Si nce ob tai ni ng the wavevec tor-freque ncy spec trum via a spatial Fourier transform i nvolves 
i ntegrations over large values of f-:(��.�3), usi ng the cross-spec tral de nsi ty fu nc tio n show n i n  
Eqs. ( 1 8-20) is agai n no t appropriate. Corcos ( 1 964) also i ndicated that  the mag ni tude of 
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F( '• , O, m) is a measure of the convective memory of a freque ncy compone nt of the wall 

pressure. Therefore, Corcos's cross-spectrum is domi nated by the co nvective pressure 
compo nents and, as poi nted out by Chase ( 1 980), its correspo ndi ng wavevector-freque ncy 
spectrum is o nly  valid at and near the convective wave number. Si nce a direct measurement of 
the space-time correlation fu nction  as i ndicated by Eq. ( 1 2) is not feasible, the crucial low
wavenumber spectrum must be  measured experimentally. The wavevector-freque ncy spectrum 
may then be empirically fitted with data. From this o ne may also fi nd the space-time correlatio n  
fu nction  and the cross-spectrum b y  i nverse Fourier transform of the wavevector-frequency 
spectrum. 

2.4 Kraichnan-Phillips Theorem and Chase's Wavevector-Frequency Spectra 

Seven years before Corcos' model was published, Kraich nan  ( 1 956) i nvestigated the pressure 
fluctuations exerted on  a flat plate by i ncompressible turbulent bou ndary layer flows. I n  
u nderwater applicatio ns, the flow is i ncompressible due to the very small Mach number. 
Kraich nan ( 1 956) rewrote the i ncompressible Navier-Strokes equation that led to the Poisson 
equation for pressure fluctuation, p: 

(25) 

where vi s the particle velocity and p is the fluid density. A co ncise descriptio n of the Kraichnan 
theorem give n by Dowli ng ( 1 998) wil l  be summarized as follows :  

For an i nviscid flow over a rigid surface S with normal n, the pressure must satisfy the boundary 
co ndition 

n·"lp =0 (26) 

A Green fu nctio n  G(x/y) for Laplace' s  equatio n  that satisfies the bou ndary condition can be used 
to recast Eq. (25) i nto the i ntegral form: 

a2 
p(x,t ) = fc(xl y) a a pv;v/y,t )d

3y (27 ) 
v Y; Yj 

I n  the case of an i nfi nite plane surface, y2=0, G is just the half space Green fu nction. 
Accordi ngly, Eq. (27 ) can be simplified to 

1 f (I 1_. I .1-·) a2 
pv;v/y.t ) 3 

p(x,t ) =- x- y + x- y 
�.�. 

d y 
4Jr V V.Y;V.Y j 
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where V denotes the half space, Y2 > 0, and y* is the mirror image of the point y with respect to 
Y2=0. Let Ps(k,OJ) and pVij(y2,k,OJ) be the Fourier transform (with respect to x�o x3, and t) of 
pressures on the surface, P.(�.O.x3,t), and Reynolds stress, pvivj(x,,y2,x3,t), respectively. The 

half space Green function becomes one-dimensional, i .e. , G(y2) = -e -JkJy, t iki (Ffowcs Wil liams, 

1982 ; Eq. 2 .1 5). This leads to 

(29 ) 

where k is the planar wavevector, k=( k1 ,k3). Since the wavevector-frequency spectrum and the 
pressure Fourier transform are related by 

<I> p (k, OJ)o(k- k')8(0J- OJ')= P. (k, OJ)?, (k', OJ'), 

Eq .  (29 ) indicates a lkl2 dependency for the wavevector-frequency spectrum known as the 

Kraichnan-Phil lips (19 56) theorem for incompressible inviscid flows. A further analysis was 
carried out by Kraichnan to examine the behavior of P. (k, OJ) at k=O. He concluded that the 

l imiting value of P. (k,OJ) ask� 0 is zero and the integral of the pressure correlation over the 

boundary surface must vanish. 

Also published in 19 56, Phi llips' work aimed at investigating the strength of an acoustic dipole 
that could cause aerodynamic surface sound from a plane turbulent boundary layer. He starts 
with the similar governing equations used by Kraichnan, but instead of solving the differential 
equations, he performed a stochastic average of the equation and then integrated it with respect 
to the position variable throughout the space outside the boundary surface. By applying Gauss's 
theorem and boundary conditions (normal velocity at the surface and the contributions over the 
surface at infinity vanish), the integrated and stochastically  averaged differential equation was 
reduced to the following important relationship: The surface integrated normal stress is equal to 
the volume integrated time-derivative of liner momentum. From this, he showed that the mean
square momentum per unit area (the momentum of the fluid in a large area squared, averaged 
and then divided by the large area) of a shear layer over a flat plate must vanish at low-speed 
incompressible flow. Consequently, the dipole sound radiated per unit area must also vanish, 
which means the pressure spectrum must be zero at zero wavenumber. Kraichnan and Philips 
results were also referred to as Kraichnan-Phi lips' low-wavenumber constraints by Ffowcs 
Williams (1982 ). 

Chase (1980, 1987 , 1991 , 1993 ) is  a seminal contributor of this field. The well known Chase 
model was first published in 1980. This is perhaps the first descriptive modeling of the 
wavevector-frequency spectrum for incompressible inviscid flows that fol lows the Kraichnan
Phillips low wavenumber constraints. His model was developed based on a comprehensive 
analysis of the fluctuating velocity field statistics and the existing low-wavenumber pressure data 
avai lable at that time. The low-wavenumber spectrum is thus proportional to the square of the 
wavenumber and vanishing at zero wavenumber; i.e., <l>p(k,OJ) � 0 as (k1, k3 )�0. In the follow-
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up paper (Chase, 1987), Chase reexamined the character of the wavevector-frequency spectrum 
and modified the spectrum to be wavenumber independent (or white) and consistent with 
experimental data in the subconvective domain, 118 < k1 << miUc, where ois the boundary 

layer thickness. For the region, OJ'c < k 1 < 1/8, the spectrum varies as JC to be consistent with 
Kraichnan-Phillips Theorem. He also extended the spectrum to the acoustic domain with the 
inclusion of slight fluid compressibility [i.e., Eq. ( 25) is replaced by the Lighthi l l 's  equation] 
such that acoustic components are generated by the incompressible source terms, the Reynolds 
stress field. This model has been widely used and was summarized in a recent text book by 
Howe (1998) with a sl ight modification. 

Unlike the Corcos wavevector-frequency spectrum, the Chase spectrum is not explicitly 
separable between the frequency spectrum and the wavevector spectrum. By carefully examining 
the Chase 1987 model according to the form arranged by Howe (1998), the approximated 
expressions that are similar to Eqs. ( 22) and ( 23) can be obtained, i .e . :  

where (30) 

fcw�87(k12 J;) = Uc (mo. I U _f3[a� +(mo. I U _)2]312[,82(1-k1)2 + p + (bmo I Ucf2r5'2 
u. 

[c P P cPs,B2(1-f.)2+k2+(bw81u)-2 ] (31) x M • IP-f; l+£2f; 
+ r P+(bmolu)-2 

1 -2 -2
1 -2 

_ 
k -ko k ,B _ Uc _ 1/2 andwhereS-c1+c

2 -2 
+c3 1 _ _  1 _ ,  -- , £-(1'll2koLp ) ,aP == 0 .1 2 ,u. is 

k k2-k; +£2k; 3u. 

the friction velocity, k2 = k12 + k32, Lp= length of the plate, CM=0.1 553, CJ<=0.0047, b =0.7 5, 
ko =mlc, CJ =213 , and c2 =c3 =1! 6. 

The normalized Chase spectrum, f(k12 ,k{), is not only a function of the normalized 

wavenumbers, (k12 ,k32), but also the Strouhal number, mo I U 00• The Strouhal number 

dependency becomes insignificant when mo I U oo>>1 , or mo. IU .. > 0.5. The corresponding form 

of Eq. (3 1 )  for the earlier Chase model published in 1980 can be expressed as 

(32) 
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where bM == 0.7 56 and br == 0.379 . The acoustic domain of the wavenumber components are not 
included in this earlier model .  As wil l  be seen in the later discussion ,  the low-wavenumber 
spectrum predicted from this model is considerably lower than Chase ' s  1987 spectrum. 

Chase 's  spectra has been approximately expressed in a way simi lar to Corcos' wavevector
frequency spectrum, i .e . ,  <P /k.w)=rpP (w)(U c I w)2 j(k1 ,k3 ) , and therefore the integrated sum 

of f(k1 , k3 ) with respect to wavevector (k1 ,k3 ) should be unity. Numerical evaluations 
indicate that Eqs. (31) and (32) satisfy this requirement. This is an attractive feature for 
comparing the various spectra l models (how the fluctuating energies are distributed to the 
various wavenumber regions), as their sums of energies are identical . It is  a lso interesting to 
compare the normalized spectra derived from the Corcos and Chase- 1987 models. The Chase 
spectra are plotted by assuming �1 inch, u. = 0.032U _ and wt5 I U _ =10 ( or U _ = 1 5 .5 ml s at 1 
m from leading edge on a flat plate and at 1000 Hz). Fig. 2 shows the comparison between two 
spectra plotted in linear scale over the wavevector plane . Both models show the fluctuating 
energies are concentrated around the convective ridge and are virtually vanishing outside this 
region . The only differences, in this case ,  between the two models are how the wavenumber 
contents are distributed around the ridge : The Chase- 1987 spectrum is more concentrated around 
the ridge whi le Corcos' spectrum is more spread out. This shows that, in the first order sense, 
when both the spectrum and wavenumber are plotted in linear scale the wavenumber spectra 
outside the convective ridge region are insignificant. The quantities of hydroacoustic interest ( the 
low-wavenumber regions) are obviously the second order effects of hydrodynamics. 

When the spectral densities are plotted in logarithmic scale ( see Fig. 3), the differences in the 
distribution of energy in the various regions of the wavevector plane are now evident. The 
Corcos spectrum spreads out more evenly to al l  regions and has a re latively lower convective 
ridge but a higher spectra l density throughout the wavevector plane including the low
wav.enumber region outside the ridge . The Chase spectrum is more concentrated around 
convective ridge and spreads out less to other regions and has a re latively lower spectral density 
throughout the wavevector plane including the low-wavenumber region .  In a small region near 
the origin of the wavevector plane, i .e . ,  the region rdc < k < 1/8, the Chase spectrum diminishes 
rapidly toward small values ( proportional  to k! according to Kraichnan-Phil lips Theorem) and 
the spectral surface displays a tiny but sharp dent in the linear wavevector plane . This tiny 
region ,  however, usual ly contains most of the bending wavenumbers of marine structures. The 
TBL wall pressure components contained in this small  region, rdc < k < 118, are therefore the 
most important source of structura l excitations. 

When this region is plotted in a logarithmic wavenumber sca le ( as is usually done in acoustics), 
the wavenumber axis can be widened to several decades. It is useful to compare the normalized 
spectra derived from the Corcos, Chase-1980, and Chase-1987 models a l l  together ( see Fig. 4) in 
the commonly used log-log scales for both the spectral levels and wavenumbers. There are two 
plots shown in the figure :  one is the spectra l levels as a function of k 1 as  k 3 is set equal to zero, 
the other is the spectral levels as  a function of k 3 as k 1 is set equal to zero. The differences in the 
low-wavenumber regions of both k 1 and k 3 are quite dramatic among the three models when they 
are compared in the log-log scales. Most of the spectral plots that appear in the literature , similar 
to Fig. 4, are concerned mainly with the k 1 variations at a fixed k 3 ,  and in most cases, k3=0. The 
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k 3 variations are a lso very important to correctly determine the response of a finite pressure 
sensor to a TBL pressure field. Based on the data extracted from Smol ' yakov and Tkachenko 
(1 991 , Figs. 4 & 5), the wavenumber region where the Chase-1 98 7 model is supported by 
experimenta l data is a lso indicated in the figure.  

From a modeling perspective ,  the Chase-1 98 7  model is a hydroacoustical ly sensible model based 
on real world experience in hydroacoustics and is consistent with the Kraichnan-Phil lips 
theorem. The Corcos model,  on the other hand, was not focused on the secondary hydrodynamic 
effect and may be considered as a hyrdoacoustically blind model .  It should be a lso remarked that 
Corcos (1964) did recognize that Kraichnan-Phil lips theorem must be satisfied at zero 
wavenumber. Considering the initia l  purpose of the correlation measurements was intended for 
the study of the structure of turbulent flow, Corcos' s  low wavenumber spectrum may be 
negligibly smal l  for that purpose . In fact, when the spectrum is  displayed in linear sca le ,  there is 
no vi sible spectrum at zero wavenumber (see Fig. 2). 
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Figure 2 .  Corcos' s  and Chase ' s  Norma lized Spectra Plotted in the Linear Spectral and 
Wavenumber Sca les 
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2.5 Witting and Smol'yakov-Tkachenko Spectra 

Although most of the leading theorists accept the so-cal led Kraichnan-Philips theorem and low
wavenumber constraints, there is no experimental evidence to support it .  The experimental data 
of the low-wavenumber spectra tend to support the low-wavenumber-white spectrum with non
vanishing spectral value at zero wavenumber. This stimulates the several empirical models 
developed in the 1980's and 1990's.  For examples: Efimtsov (198 2), Witting (198 6), 
Smol 'yakov and Tkachenko (1991), Chase ( 1987 , 199 1 ,  1993), and the Modified Corcos models 
used by Ko and Schloemer ( 1989), Hwang ( 1998), Hambric and Hwang ( 2000), and a number of 
others. Efimtsov' s  model will  not be discussed further here since it has been thoroughly 
examined by Graham (1997) and found to provide insignificant improvement over the origina l  
Corcos model .  

2.5.1 Witting's Spectrum 

Based on the stochastic model of turbulent burst/sweep events, Witting (198 6) provided one of 
the earliest attempts to develop a wavenumber-white model. Witting considered each burst and 
sweep an independent event and as  a dipole that moves with the local mean flow .  He derived a 
Bernoulli re lationship that connects the wall  fluctuating pressure from an individual event to the 
fluctuating ve locity. Based on the Fourier transforms of the event, he assumed a form of wall 
pressure wavevector-frequency spectrum contributed by the fluctuating ve locity at a distance , d, 
from the wall :  

where < p 2  > is  the mean square pressure ,  B is  a dimensionless constant, and C is an arbitrary 
constant. The wavenumber-frequency spectrum is then obtained by summing the above spectrum 
over a range d, according to an assumed probability density function , i .e . ,  Pr( d) oc 11 d . Final ly, 
the wavevector-frequency spectrum which is result of the integrated sum of the dipole 
contributions, between the inner scale §min and outer scale §max , is shown below:  

where � = k + C im - k1 � ; �max = (b'max / b'. )�; �min = (8min / 8. )�; k1 = k18. ; k3 = k38. ; 

k = k� + ft ; m = wb'. IUC ; A= c / {.n[1 + 2/(3C 2)]ln(8max I §min } ;  
- - -

< P2 >= f dk1 f dk3 f dw<t> P (k , w) == 0.01 5p 2U;u! . 

This leads to a low-wavenumber white spectrum and the level can be made to fit the 
experimental data with a proper choice of C ( the value C=8 is recommended by Witting). 
Witting's formulation was, however, criticized as artificially introducing a volume dipole 
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( Dowling, 1998), which i s  incompatible with the equations of motion ( the incompressible 
Lighthil l  equations). 

Witting's frequency spectrum is then the integrated sum of Eq .  (33) over the wavevector plane: 

(34) 

and, the dimensionless form of Witting' s wavenumber spectrum is then 

(35) 
where k1 = (wiUJk1l5. , and k3 = (wiUJk3l5 • .  As shown in Fig. 5, Witting's low-wavenumber 
spectrum is about 1 5  dB lower than that of Corcos's but the convective ridge level is much 
higher, indicating a shift of spectral energy toward the convective ridge . Witting' s frequency 
spectrum wil l  be discussed later a long with the other mode ls. 

2.5.2 Smol'yakov-Tkachenko Spectrum 

Smol' yakov and Tkachenko ( 199 1 )  discussed the inadequacy of the Corcos model for predicting 
the low-wavenumber spectra . Based on their measurements of the longitudinal and lateral 
correlations at a large range of spacing, e .g., �1 / §. = 2.6 --7 52.0; �3 / §. = 2.3 --7 9.6 , they argued 
that the deviations from similarity with respect to w�1 I U c and w�3 / U c increase as  �I§. 
increases. Therefore , they proposed to use frequency dependent generalized decay rates, ii(w) , 
in conjunction with a non-rectangular product form of the coherence function: 

where ii(w) = a1�1 - 0.2(wl5. 1UJ-1 + 0.22 (wl5. 1Ucf2 and m0 is the ratio of the spanwise and 
stream wise decay rates, i .e . ,  m0 = a3 / a1 ("" 6.45) . This coherence function is now an exponential  
function of the square root of the geometric sum of stream wise and span wise distances. The 
frequency dependency of the genera lized decay rate is  more significant at small values of 
w§.l uc whi le ii(w) --7 a. at large values of w§.l ur . 
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jyK1 (cy)cos(gy)dy = 7l c(c2 + g 2r3' 2 (Gradshteyn & Ryzhik, 19 65; pages 482 and 749, 
0 2 

respectively), Smol 'yakov-Tkachenko's  dimensionless Spectrum can be obtained in a rather 
simple form as follows:  

fs&r <fl , k3 ) = 
a [a2 + (1 - kl )2 + (k3 1 mo) 2T

3'2 
27lm0 

Their <l>p(k,w) at zero and convective wavenumbers, is then approximately, 

(37) 

When this is compared to the Corcos spectrum, Smol 'yakov-Tkachenko's zero wavenumber 
spectrum is lower by the factor of nii I 2 ,  which is about 8 dB lower when the value of ii is 
assumed to be 0.1 .  Smol'yakov and Tkachenko considered this was sti l l  too high as compared to 
the measured low-wavenumber spectra,  so they introduced a correction factor, which has similar 
low-wavenumber characteristics as Eq. (37 ) but wil l  not yield an significant high wave number 
components : 

where m1 = (1 + li2 ) /(5n - 4 + li2 )  and n i s  a constant chosen to fit measured data . The final  form 
of the normalized wavevector-frequency spectrum is 

(38) 

If n is chosen to be near unity, the values of f(kp k3 ) and !:J.f(kp �)  at low-wavenumbers are 
very close and the difference is  therefore is a small value .  For example ,  if n=l .005 as  suggested 

- - - - - -

by Smol 'yakov and Tkachenko, f(kp k3 ) - l:J.f(kl ' k3 ) .:::0.005 f (kp k3 ) ,  and the corrected 
spectrum will  be about 23 dB lower than the uncorrected spectrum. Due to the coherence 
function expressed as  an exponential function of the square root of the geometric sum of 
streamwise and spanwise separations, Smol 'yakov and Tkachenko' s  k3-spectrum is now similar 
to that of Chase ' s  showing an increase in value with wavenumber rather than a slight decrease in 
value with wavenumber in the Corcos' and Witting's spectra .  
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Figure 5. Normalized Corcos' s, Witting's and Smol ' yakov-Tkachenko's Spectra Displayed 
in Logarithmic Spectra as a Function of Logarithmic Wavenumbers. 

2.6 Modifications of the Corcos Model 

As mentioned earlier, the Corcos model of cross spectral  density function is an approximate 
model derived from the results of two-point corre lation measurements. This spectrum is 
applicable primarily in the region that is dominated by the convected pressure fie ld. In the low 
wavenumber region of vibroacoustic interest, Corcos's  wavenumber-frequency spectrum has 
been shown to be inaccurate .  Because Corcos' cross-spectra l  density function was derived from 
experimental data with the appeal of simplicity, the reason for its inaccuracy at low 
wavenumbers wil l  be examined first, and then the possible remedial modifications to improve its 
accuracy will  be investigated. 

From the definition of Fourier transform, Eq. (2 1 ), the wavevector-frequency spectrum for Eq. 
( 1 8) at zero_ stream wise and spanwise wavenumber is equal to t/JP (m) times· the product of two 
integrals; the first is the integration of A(wc;;1 IUJexp ( iw�/Uc ) / 2.1Z'with respect to �1 , and the 
second is the integration of B(wc;;3 I UJ I 21! with respect to �3 · The integration limits for both 
are from - oo to oo . It is noted that the factor, exp ( iw�/U c )  , is required for the stream wise cross 
spectrum to account for the effect of the mean convection of the flow .  No such factor is required 
for the span wise cross spectrum. Therefore , if Eq. ( 1 8) is determined by a pairs of measuring 
sensors mounted in the convected frame of reference ,  the factor exp ( im�/U c ) in the first 
integrand must be dropped, because there would be no mean convection effect on the sensors. In 
other words, the streamwise cross-spectrum measured by the moving sensors would be similar to 
the spanwise cross-spectrum measured by pairs of stationary sensors except for the differences in 
decay rates. In this case ,  the ca lculated spectrum will peak at zero wavenumber , which is 
proportional to the product of the areas under A(wc;;1 I U J B(wc;;3 I U c ) 1(27t/ and is equal to 
t/JP (m)(U c I m)2 l(1!2a1a3 ) = f/JP (m)f l-3 I 1!2 where f /3 is the corre lation area .  Therefore , the net 
force spectrum per unit area exerted by a TBL on a rigid plate is proportiona l  to the correlation 
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area only when the plate is convected with the flow .  When the measuring sensors are mounted in 
the fixed frame of reference, the spectral peak  is shifted to the convective wavenumber due to the 
factorexp (im�/Uc } . The convective ridge spectrum is then equal to ¢/OJ)f/3 11!2 • However, 
the frequency spectrum ¢/OJ) observed in the convected frame could be much less, because in a 
completely frozen flow there is no time-varying signature which can be observed in the 
convected frame of reference ( Fisher and Davies, 1 963). 

The zero wavenumber spectrum observed in a fixed frame of reference, on the other hand, is 
proportional to the integration of A( cv,11 UJ cos ( cv"!Uc ) l 21! with respect to �1 • The function A 

is symmetric in m�/Uc . Fig. 6 shows the integrand, A( cv,11 UJ cos (cv"!Uc), plotted as a 
function of m'1 1 Uc ( the red curve). The zero wavenumber spectrum is  now equal to the 
integrated sum of A( cv,11 UJ cos ( cv;.;uc ) 1 21! with respect to �1 times f)P (OJ)(UJ OJ) 1( 1! a3 ) .  
Noting that A( cv,11 UJ =exp(-a1wi�1 1 1U) is a steady decaying function and cos ( �/Uc) is a 
rapidly oscillating function of �1, the resulting integral of the product i s  a smal l  value which is 
proportional to the decay rate . The non-zero spectrum at k1=0 is contributed by the residue of 
incomplete sinusoidal cancellation due to the spatia l  decay of coherence ;  the smaller the decay 
rate the smaller the spectrum at k1=0. The net value of the integrated sum of 
A( cv,11 Uc) cos ( cv"/Uc) 1 21! is  shown to be equal to (Uc I w)a1 1 [ 1!(1 + a12 )] = (UJ w)a1 In 
since a1<<l .  The ratio between the integrated values with and without the osci llating term is 
then approximately equal to [ (Uc I w)a1 In ]I [ (Uc I OJ) I(na1 ) ]=a12 • Since a1 = 0. 1 ,  the effect of 
the oscillating term thus reduces the streamwise integral to about 1%.  Therefore the zero 
wavenumber spectrum is actually very small, but is sti l l  too large in aero and hydro acoustics. 
The spectrum of the net force exerted on a stationary rigid plate wil l  be proportional to the plate 
area times ¢P (w)a12f/3 1n2 in contrast to that times ¢/w)f1f3 11!2when the plate is convected 
with the flow .  The factor a12 ( the ratio of the zero wavenumber and convective-wavenumber 
spectra) is often incorrectly ignored in predicting the TBL exerted force on a stationary finite 
plate when the corre lation area is used. 

Corcos's  zero wavenumber level is about one percent of the convective ridge leve l .  This may be 
negligibly small from a fluid dynamics point of view .  However, a problem arises when it is used 
as the forcing function for a large structure.  Because a large structure acts as  an enormous low
pass wavenumber fi lter and demands a more accurate low-wavenumber spectrum. This accuracy 
is inherently impossible to obtain from Corcos' simple model, which is based on correlation 
measurements dominated by the pressure fluctuations convected with the flow .  A more accurate 
low-wavenumber spectrum might be obtained if one could actually conduct the space-time 
correlation according Eq. (1 2). The Fourier transform of this function would ensure that its 
wavenumber and frequency contents are orthogonal under the area and time averaging process. 
Since a direct measurement of the space-time corre lation function is not possible, the exact value 
of the low-wavenumber spectrum is not known. We can only estimate this spectrum using a 
mathematical model based on the response of a mechanica l system such as a flat plate or an array 
of pressure sensors; both systems respond instantaneously to the space averaged TBL forces at 
any instance of time. From reported measurements by Martin and Leehey ( 1 977), Farabee and 

27 



Geib ( 1976), and others, the Corcos 's low wavenumber spectrum must be reduced in the order of 
20 dB. Some modifications of the Corcos-type spectrum for predicting the low-wavenumber 
spectra to be more in line with the measured data are discussed as follows.  
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Figure 6. Corcos ' s  corre lation functions and the streamwise Cross-Spectrum 

2.6.1 Ko and Schloemer Spectrum 

Since Corcos's low wavenumber spectrum is about 20 dB below the convective ridge and is 
about 20 dB too high ,  the rule of dumb is that the correct low wavenumber spectrum must be 
about 40 dB below the convective ridge . One simple way to accomplish this is  by reducing the 
value of a1 from its typical value of0. 1 to 0.0 1  (Ko and Schloemer, 199 2) whi le keeping a1 

unchanged. According to Eq. (24), this wil l  reduce the Corcos ' s  zero wavenumber spectrum by 
10 dB while increasing the convective ridge by 10 dB, and consequently the zero wavenumber 
spectrum is about 40 dB below the convective ridge . Ko and Sch loemer' s  simple modification of 
the Corcos spectrum was aiming at an acceptable low wavenumber spectrum, since the accuracy 
of the high wavenumber spectrum was not important in their ana lysis. Comparing convective 
ridge levels shown in Fig. 4, the Chase spectrum is about 5 dB higher than the Corcos spectrum, 
and the Ko and Schloemer ' s  modified spectrum is another 5 dB higher sti l l .  Using this modified 
wavenumber spectrum in conjunction with a simple Strouhal sca le independent frequency 
spectrum, fjJP (w) = p2u: w-1 , Ko and Schloemer indicated that their calculations of the flow noise 
reduction for a planar array of hydrophones were satisfactory. 

2.6.2 Willmarth and Roos Spectrum 

At the time the Corcos mode l was proposed, corre lation of wall  pressure for very small  spatia l  
separation, say ��� I <  0.7 J. , had not been measured due to the limitation of finite size pressure 
sensors. Corcos ' s  simi larity of the cross-spectra l  density function assumed this missing 
information .  In wavenumber-frequency domain analysis, Wil lmarth and Roos [ 19 65] attempted 
to recover the TBL power spectrum that would be measured by a point transducer from 
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correcting the data measured by a finite size transducer. They believed that the missing 
information at small spatial separation might be crucial for accurate ly determining the correction 
factor, especially at low frequencies. Accordingly, Corcos's coherence functions are modified as 
shown below to improve the fit between prediction and measured data: 

A( �1 ) = exp( -a1 1� 1) +a1 1� 1exp(-b 1a1 1� 1) (39 a) 

8( �3 ) = 0.1 55exp(-0.09 2 ��3 1) +a3 exp(-0.789 ��3 �) 
+0.1 45exp(-2.91 6 ��3 1) +  1 .414a3 1�3 1exp(-b3a3 1�3 �) (39 b) 

where � =W�dUc, �3 =W�IUc, al=0.1145 , b J=21 .83 , l1J=0.7 ,  and b 3=5 .71 . The last term on the 
right-hand-side of Eqs. (39 a) and (39 b) were chosen to make A '(0) and B '(0) zero whi le the 
corresponding terms of Corcos's  original function have negative slopes at the origin. This is 
likely the first time the Corcos cross-spectrum was modified. The decay constants in the added 
terms increase the values of both coherences, A and B. Eq. (39 a) predicted streamwise coherence 
agrees well with the measured data and that predicted by the original Corcos function, except a 
small notable change when � <1 . The spanwise coherence shown by Eq. (39 b), agrees well with 

measured data, while the original Corcos function predicts a considerably lower value when �3 
>2 ( Wil lmarth and Roos, 19 65, Figs. 1 and 2; Farabee, 198 6, Fig. 5 .11 ) . 

In order to obtain a similar normalized wavenumber spectrum shown in Eq. (23 ), Willmarth and 
Roos' s normalized spectrum is denoted as 

- -

fw&R(kl ,k3 ) = f.(kl )f3( k3 ) ( 40) 

where the subscript W &R indicates that the spectrum is the result of Fourier transform of the 
Wil lmarth and Roos coherence functions. Consequently, 

( 41 )  

and 

( 42) 
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The last terms on the right-hand-side of the above two equations are the Fourier transforms of the 
last terms on the right-hand-side of Eqs. (39 a) and (39 b). These terms were intended by 
Willmarth and Roos to make the coherence functions have zero slope at the origin in order to 
reduce the undesirable hjgh wavenumber components. The normalized spectrum of Eqs. (41 )  and 
(42) will be cal led the Willmarth-Roos spectra . As shown in Fig. 7, the differences between this 
spectrum and that of Corcos' are not particular significant except at the convective ridge region, 
the k3-variations in particular. The main difference is that Willmarth-Roos' s  spanwise 
wavenumber spectra near the convective ridge is more concentrated (with a hump contributed by 
the first term in Eq. (39 b)) at  k3=0, while Corcos's  spectrum spreads out more evenly. This 
causes Willmarth-Roos spectrum to have a higher convective ridge . Simj}ar spectral curves of 
the Chase-87 spectrum are also shown in the figure, which shows a significant departure from 
Corcos's  and Willmarth-Roos' s  spectra especial ly in the low wavenumber region. Incidental ly, 
Willmarth-Roos' s convective ridge matches perfectly with that of Chase-87 . This may justify the 
modification by Willmarth-Roos to improve the prediction of sensor attenuation near the 
convective ridge . However, Willmarth-Roos's  low k3 spectrum (when k1=0) shows a small  hump 
at k3=0 instead of a dip that is shown in the Chase 's  physics based spectrum. Therefore, the 
modification of the span wise coherence, Eq. (39 b), is considered to be unnecessary for the 
purpose of improving the low wavenumber spectrum of Corcos. Corcos 's  original form, Eq. (20) 
should be used instead. 

The last terms of Eq. (39 a) and (39 b) produce a negative spectrum when 

where b1a1 and b3a3 are the exponential decay factors. These terms reduce the wavenumber 
spectra produced by the respective preceding terms. For example , the first term of Eq. (39 a) is 
the Corcos approximated streamwise coherence function, which is responsible for the unwanted 
high low wavenumber spectrum. The second term may help to reduce it. Since Willmarth and 
Roos' s  b1a1 and b3a3 are equal to 2 and 4, respectively, the negative spectra will occur when 

k1 < -1 , k1 > 2 and lf3 1 >4. These wavenumbers are outside the low wavenumber region of 
interest. From the previous comparison between Corocs and Chase spectra (see Figs 4), it is 
desirable to reduce Corcos spectrum in the entire wavevector plane outside the convective ridge . 
This can be done by properly choosing b 1  and b 3. Fig. 8 shows the normalized Wil lmarth-Roos 
spectra at the various value of b 1 , while b 3  is kept to be equal to 2. It is shown that when b 1  is 
reduced to 0.5, the Willmarth-Roos's low-wavenumber spectrum will be about 20 dB lower than 
that of the Corcos spectrum. Therefore, it is remarkable that the modification of the Corcos 
stream wise coherence function by adding the term, a, lrl exp( -b1a1 lrl) , where r = W�1 I U c ,  as it 
was done by Willmarth and Roos can reduce the low-wavenumber spectrum to any desired level 
by adjusting the value of b 1 . 
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Corcos, M & R,and Chase-S7 Spectra, k3=0 Normahzad K3-Speclrum, k1=kc and k1=0 
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Figure 8 .  Normalized Corcos and Wi llmarth-Roos Spectra with Various Values of b1 

2.6.3 Modified Corcos Spectrum 

The Modified Corcos cross-spectrum given in this section was suggested by Elswick (1 983) of 
the Nava l Undersea Warfare Center, Newport, RI ( formerly the Naval Undersea System Center, 
New London , CT). Some successful applications of this  spectrum were reported by Ko (1 991 ), 
Hwang (1 998 ) and Hambric and Hwang( 2000). Since the information on how this model evolved 
was not known to the authors, a discussion follows on the two sources that may lead to the 
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Modified Corcos spectrum shown in Eq. ( 43): the first is Willmarth and Roos' s  model mentioned 
in the previous section , the second is Chase 's  ( 198 7) approximated correlation functions. 

In Wi llmarth-Roos's  modified cross-spectrum if the constants b,  and b3 are chosen to be 1 and 2 
respectively, the last two terms of Eqs. (39 a) and (39 b) wil l  produce negative values in the 
wavenumber ranges � < 0.9 and �� I > 1 .4. In Fig. 8 ,  the normalized Willmarth-Roos spectrum 

with b3=2 at various values of b 1  is shown. When b 1  is reduced to 0.5, the Willmarth-Roos' s  low 
wavenumber spectrum may be reduced to a desirable level ,  but there are two irregular kinks on 
its spectra l curve just outside the convective ridge . Therefore , a desirable choice of b1  may be 
b 1=1 .  This leads to a simple form of the modified Corcos cross-spectral density function ,  which 
is identical to that suggested by Elswick ( 1983), i .e . ,  

Fmc( ,,rn) = ¢/w) ( 1 + a1 lm(1 I Uc l )exp ( -a1 1m(1 I Uc l )exp ( -a3 lm(3 I Uc l )exp ( im�/Uc ) 
( 43) 

where the origina l  Corcos spanwise corre lation function is used, and the streamwise correlation 
function is multiplied by the factor, 1 + adw�lUcl. This means that the original  streamwise 
correlation is increased proportional to a dw;11Ucl. Since a1 - 11 10, the increase is small  at smal l  
values of w;1 I U c .  However, the increase becomes significant  when w;1 I U c > 10. Like the 
Chase- 1980 version of the cross-spectral density function ,  this cross-spectrum is, as expected, 
significantly different from the typical Corcos type cross spectra obtained from fitting the data 
from two-point corre lation measurements. The increase of correlation thus shifts the spectral 
contents toward the convective ridge whi le reducing the low wavenumber spectrum. 

As mentioned earlier, there is no corresponding closed form solution of the cross-spectral density 
function for Chase ' s  198 7 wavevector-frequency spectrum. However, Chase pointed out that in 
the Strouhal sca le independent range, where w§ I U _ >> 1 ,  the stream wise and span wise 
correlations may be approximated by 

and 

The corresponding normalized non-dimensional  spectra are then 

and 
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In the low wavenumber and convective ridge limits, the above wavenumber-frequency spectrum 
approaches the following va lues: 

2 ( 2p,3 + rrp,(l + p,2 ) J 
(1 + rT )7l2 (1 + rr )(1 + p,2 )2 ' 

2(2 + rr )  
p,(1 + rr )2 7l"2 ' 

With the values p, == 0. 176 and rr == 0.389 recommended by Chase , the zero wavenumber 
spectrum shown above is about the same as Corcos' s spectrum. This approximated form of the 
correlation function is therefore not capable of generating the desired low wavenumber 
spectrum. 

However, when the value rr is assumed zero, we have 

and 

This streamwise corre lation wil l  have the same form as that of the modified Corcos model .  
However, in this case ,  the spanwise correlation is a lso similarly modified. Therefore, the 
Modified Corcos cross-spectrum is somewhat in line with Chase ' s  ( 1 987) approximation .  

The Modified Corcos wavevector-frequency spectrum i s  then the Fourier transform of Eq. (43 ), 
which is 

- - _ ( U c )2 { 2cf. } { a3 } <I> p ( kl ' k3 '(J)) - l/J p ( (J)) - [ 2 - 2 ]2 [ 2 k- 2 J ' ( 44) 
m 7l" a1 + (1 - k1 ) 7l" aJ + 3 

and the approximate spectrum at zero wavenumber spectrum is 

.P, (k, w) = ¢, (w) 
( � )' { �,} as (k, k3)--> 0 , (45) 

which is lower than that of the Corcos spectrum by the factor of 2a12 ( == 0.02 = -17  dB) . The 
spectrum at the convective ridge, on the other hand, is doubled (+3 dB). This yields a zero 
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wavenumber spectrum which is about 40 dB below the convective ridge . The above modification 
does not change the integrated value of the wavenumber spectrum, since the doubling of the 
va lues at convective ridge is compensated by the reduction of the wavenumber contents outside 
the ridge . The spectrum of the net force exerted on a rigid plate calculated from the Modified 
Corcos spectrum will now be proportional  to the plate area times ¢J/m)2a14l .-f.3 I 1r2 in contrast to 

that times ¢J/w)a12f1f 3 I 1r2 when the original  Corcos spectrum is used. The comparison of this 
spectrum to the other spectra will be shown in the latter sections. 

2. 7 Pressure Spectrum Caused by Viscous Shear Stresses 

In viscous flows, the Navier-Strokes equations may be linearized in the near wall  region and the 
equations of motion can be separated into irrotational , vt , and rotational ,  v, , components (Morse 
and Ingard, 1968): 

av 
p-

t 
= -'Vp and at 

av 
p-1 = -f.J, curl curl v, , respectively. at 

On a rigid surfaceS with norma l n, in order to satisfy the no slip wall condition, vt + v, =0, the 
pressure and shear stress must satisfy the fol lowing boundary condition, 

on S. (46) 

The inviscid solution, Eq. (27), must now include the wall shear stress contributions (Dowling, 
1998): 

(47) 

In the case of an infinite plane surface, G is the half space Green function, Eq. (47) can be 
simplified to 

(48) 

where a must be summed over two directions in the plane, 1 and 3 .  Similar to the way Eq. (29) 
was obtained, the wavevector-frequency transform of the surface pressure, Ps(k,w) , becomes 

(49) 
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where aa2 (k,m) is the Fourier transform of the wall shear stresses at Y2=0. Eq. (49) indicates that 
including viscous shear stresses could lead to a non zero spectrum at zero wavenumber. 
Although not free from controversy (Howe , 1992; Dowling, 1998), the estimated non zero shear 
stress near zero wavenumber by Kronauer, Holl is, Bul lock, and Lai ( 1 997) may substantiate this 
assumption. 

Chase ( 199 1 )  showed how the wall pressures and shear stresses can be re lated to the fluctuating 
Reynolds stresses, the main sources of fluctuating pressures. He assumed that a a2 (k,m) need not 
vanish at zero wavenumber as do the wall  pressures in inviscid flows. More specifical ly in the 
region ,  rdc < k < 1/8, the low wavenumber pressure amplitude is  equal to that of the shear stress 
except they are 90° out of phase .  A semi-empirical  model for the wavevector-frequency spectrum 
of turbulent wall  shear stress (which is equal to the low wavenumber pressure in amplitude) was 
constructed (Chase, 1993) based on the spectra of streamwise ve locity in the sublayer of 
turbulent pipe flow measured by Morrison et a l .  ( 197 1 ). This empirical shear stress spectrum at 
near zero wavenumber, S(O,w), is shown be low :  

where w+ = wv I u'! , a+ = ou. I v . Another set of near zero wavenumber spectra avai lable in the 
literature was the pressure spectra published by Sevik ( 1986). As shown in Fig. 9, Sevik's data 
collapse quite we ll with Chase 's  empirical curve although Sevik's data (the underwater portion 
of the data) are only available in a rather small  range of Strouhal  numbers. 
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Figure 9. Chase 's  Empirical Zero Wavenumber Spectrum and Sevik's Data , the 
Normalized Spectrum in dB is lO log [ <l>P (O,O,w)U_ I r!o!] 
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2.8 A Combined Chase Model 

Chase ' s  zero wavenumber spectrum discussed above may be assumed to be representative of the 
wavenumber independent spectrum in the low wavenumber region ,  which may be normalized by 
¢Jp (m)(Uc I m)2 and then added to Eq .  (31) to form the Combined Chase spectrum, i .e . ,  

(51) 

By so doing, one assumes that the spectra caused by shear stresses, fs , are wavenumber 
independent in the low-wavenumber range,  and a white pressure spectrum which equals fs is 
added to the Chase ' s  1987 spectrum. Since the value of fs is usually at least three orders of 
magnitude smaller than that of the convective ridge, the effect by adding fs (in the low
wavenumber region) on the integrated sum of  the normalized spectrum over the wavevector 
plane (to be unity) should be insignificant. From here on, this spectrum wil l  be called the 
Combined Chase spectrum. Fig. 10 shows the comparison between Chase 's 1987 and the 
Combined Chase spectrum at a small Strouhal  number, say, mo. I U _ =0.5 .  The two spectra show 

differences only in the low wavenumber region ; the region where (k12 + k{)11 2 < 0. 1 .  It is  evident 
that by adding the low wavenumber white contents contributed by the shear stresses, the sharp 
dent at zero wavenumber of the Chase 1987 spectrum at low Strouhal  n umber disappears. The 
Combined Chase spectrum is now smoother (with sha llower dent). The white spectrum, 
however, is not rea lizable in the linear wavevector plane. The white spectrum can be seen only 
when it is broadened in logarithmic wavenumber scale. Fig. 1 1  shows the same comparison 
between the Corcos, Chase-1987 , and the Combined Chase spectra as a function of k1 observed 
at k3=0. The Combined Chase spectrum now shows a low wavenumber white spectrum (the red 
curve) as it is plotted in the logarithmic wavenumber sca le. This is for the case of low Strouhal 
number, mo. I U _ =0.5, where adding the contribution by the viscous shear stresses significantly 
changes the low wavenumber spectrum. 
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Due to the more significant acoustic contributions at higher frequencies, the shear stress 
contributions are no longer significant at higher Strouhal numbers. This  is shown in Fig. 12  
(calculated with U .. = 1 5 m /  s and the length of the plate, Lp=5 m) where the Combined Chase 

and the Chase 1987 spectra are compared for various Strouhal numbers, ranging from 0.06 to 18 .  
Shear stress contributions become less significant when Strouhal numbers are near or larger than 
6 and become no effect at al l when the Strouhal number is 1 8 . This  point may be further 
i l lustrated by Fig. 13 ,  which shows the near zero wavenumber spectra as a function of m8. I U 00 

predicted from Chase- 1987 acoustic and Chase- 1993 shear stress models. Also shown in the 
figure is the Combined Chase near zero wavenumber spectrum which is the sum of the two 
spectra. The near zero wavenumber spectra, <I> P (O,O,m)U 00 I r!8! , are expressed in the same way 

as that of Blake ( 1 986), to provide a possible direct comparison with the other wind tunnel data. 
The low-wavenumber wind tunnel data shown are the least square fitted curves by Martin ( 1976) 
and Farabee-Geib ( 1976) and are acquired here from Blake ( 1986, Fig. 8-28). It is noted that the 
wind tunnel measurements were taken at the wavenumber region considerably deviated from 
near zero wavenumber region (see Fig. 14). The differences in the spectral levels in the two 
region shown in Fig. 14 may explain why the wind tunnel data shown in Fig. 1 3  are considerably 
higher than the near zero wavenumber spectra contributed by the wall shear stresses. 

Noono�zed Chase-87 k 1-Speorum, k3�o 10 
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(a) Chase 1987 Spectrum 

-60 

kl ll<C 

(b) Combined Chase Spectrum 

Figure 1 2. Normalized Chase-87 and the Combined Chase spectra as a function of S= m8. I U 00 

It is shown in Fig. 1 3  that when the flow (underwater) conditions are, U 00 = 15 m/s and £5::0.05 m 

(at 5 m from leading edge), the wall shear stress is the predominant contributor of the near zero 
wavenumber spectra when m8. IUOO <10, and when m8. IUOO >lO, Chase's suggested acoustic 

contribution will be the dominant contributor. It also shows that at a different flow condition, 
where Uoo=lO m/s and £5::0.02 m (at 1 m  from leading edge), the change of the predominant 

contributor occurs when m8. I U 00 =7.5 instead of m8. I U 00 =10  in the previous case. Unlike 

Corcos' s  spectrum where one normalized spectrum, Eq. (23), is universal ly  applied to al l 
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frequencies, both the normalized Chase 1987 and the Combined Chase spectra are speed and 
frequency dependent. 
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Fig. 1 3  Near zero wavenumber spectra predicted from Chase- 1 987 acoustic, 
Chase-1 993 shear stress, and Combined Chase models and the Low-wavenumber 
Wind Tunnel Data by Martin and Farabee-Geib 

2.9 Comparison of the Various Spectral Models 

Fig. 14 shows the comparison of the normalized k1-spectra computed from the models of Corcos 
( 1963), Witting ( 1986), Smol' yakov-Tkachenko ( 199 1 ), Modified Corcos, Chase ( 1987) and the 
current Combined Chase. It shows that the Witting-86, Modified Corcos, Chase-87 and the 
Combined Chase spectra are clustered together within a couple of dB for k 1>0. 1 kc at GJ<S. I U _ =1  

and for the nearly entire subsonic range when GJ<S. I U _ =10. Noting that Chase-87 spectrum is  

empirical ly fitted with data in these ranges, this may be reason why the Modified Corcos 
spectrum has been used successfully by many investigators such as Ko and Schloemer ( 199 1 ), 
Hambric and Hwang (2000) and others. However, the Modified Corcos as well as the Witting 
spectra are considerably higher in level than both the Chase-87 and the Combined Chase spectra 
in the supersonic region and at low subsonic wavenumbers as well when Strouhal numbers are 
low. Although Witting-86 and the Modified Corcos spectra collapse nicely within a couple of dB 
at all wavenumbers except near the convective ridge, they cannot justifiably be used in the 
supersonic and low subsonic wavenumbers regions. At the convective ridge, the Witting 
spectrum is unusual ly sharp and high (see Figs. 5 and 14) and may cause errors when the 
contributions to the excitation are dominated by the convective ridge. As mentioned earlier, the 
Corcos-63 spectrum is about 20 dB too high at low wavenumbers. Although the Smol ' yakov and 
Tkachenko spectrum may be nearly correct in the supersonic range, at nearly all subconvective 
wavenumbers it  fal ls about 15  dB too low. 

At this point, the Combined Chase spectrum is the most empirical ly justifiable model. 
Unfortunately, it i s  not possible to obtain a corresponding cross-spectral density function in a 
closed form solution, as noted by Chase ( 1987), via inverse Fourier transformation. Despite the 
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simplicity in the mathematical descriptions for both the cross-spectral density function and the 
wavevector-frequency spectrum, the Modified Corcos spectrum agrees remarkably  well with the 
Combined Chase spectra, except in the supersonic region and at low subsonic wavenumbers 
when Strouhal numbers are low. The possible impact of this deficiency will be evalued in 
Section 3. Although Witting also agrees well with the Combined Chase spectrum, Witting 
spectrum does not have a simple descriptive form [see Eq. (35)] , and does have the 
corresponding cross-spectrum necessary for use with numerical models. For subsonic low 
wavenumber excitations in finite-element models of structures, it may be plausible to use the 
Modified Corcos cross-spectrum to approximately represent the cross-spectrum for the 
Combined Chase wavevector-frequency spectrum. 

NonnallZed k1 -Spedrlln, 1<3:0 Norma}ll!d k1-Spec1rum, 1<3=0 

k11kc k11kc 

{1)()� I U .. =1 ax5. I U .. =10 

Figure 14. Comparison of the Various Models at Two Strouhal Numbers 

' 
\ 

As indicated in Figure 14, three regions of wavenumbers exist where data are available for 
comparing with the spectral models. Near the zero wavenumber region, Sevik's data agrees with 
Chase's  wall shear stress caused pressure, which is the dominant contributor of the Combined 
Chase spectrum when ax5. I U .. < 10. However, the Combined Chase near zero wavenumber 

spectrum in the neighborhood of ax5. I U .. =10 or larger wil l  be predominantly contributed by the 

acoustic components (see Fig. 1 3). Therefore, there is  no experimental data to support the 
Combined Chase spectrum when ax5. I U .. >10. In a subconvective range, where 0. 1 < k1 I kc <0.25, 
is the region where most low wavenumber spectra were measured (e.g., Martin and Leehey, 
1977; Farabee and Geib, 1 976) . The Combined Chase, Modified Corcos and Witting spectra 
agreed wel l with data in this region. In the higher wavenumber subconvective range, where 
0.3<k1 I kc <0.75, the Modified Corcos spectrum is confirmed (so are the Combined Chase and 

Witting spectra since they col lapse) by an analysis by Hambric and Hwang (2000) using the 
experimental data obtained from a Purdue University wind tunnel by Han, Bernhard, and 
Mongeau ( 1999). However, in the crucial wavenumber region of underwater interest where 
0<k1 I kc <0. 1 ,  there is no experimental data avai lable to confirm any of the models. 

It is noted that the normalized empirical low wavenumber spectra such as the Chase' s 
supersonic, near zero wavenumber shear stress spectra, and the zero wavenumber Sevik data, 
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f(k1 == O,k3 == 0) , discussed above have been normalized using the Chase's  point frequency 

spectrum shown in Eq. (30). In order to recover the actual values of these wavenumber
frequency spectra, Eq. (30) must be used. On the other hand, both the normalized spectra, 

f (k1 , k3 ) , of the Corcos and the Modified Corcos models are independent of what value of the 

point frequency spectra are used to normalize them (see Eqs. 23 and 44 ). Since the normalized 
wavenumber spectra are merely showing the relative distribution in wavenumbers of the point 

frequency spectrum, which sum over the normalized wavevector plane ( k1 , k3 ) is always unity. 

We, therefore, assume that al l of the normalized wavenumber spectra established above can be 
applied in the same way as those of the Corcos and the Modified Corcos models, i .e. , 

¢> P (k ,m) = ¢/m) (Uc I m t f(k1 , k3) ,  where the value of (JP(m) can be determined by an 

independent experiment or calculated from a predictive model .  

3.0 Point Frequency Spectrum 

The frequency density function of the wall pressure depends strongly on the flow parameters. Its 
value is usually determined according to experimental curves plotted according to certain scaling 
laws (Blake, 1986; Farabee and Casarella, 199 1 ;  Keith, Hurdis, and Abraham, 1 992; Goody, 
2002). For example, the low frequency spectrum scales well with outer variables such as the 
boundary layer thickness, while the high frequency spectrum scales better with inner variables 
such as the wall shear stresses. All scaling parameters depend on the Reynolds number (in terms 
of distance from the leading edge, boundary layer thickness, or momentum thickness) of the 
flow. It is quite cumbersome to determine the point-to-point variations of the pressure spectra on 
the surface of a vehicle using the non-dimensional curves. In the past (Chase, 1 980; Ko and 
Schloemer, 1989), the following simple approximation had been used, 

(52) 

where a0 is a proportionality constant which may vary from 1 to 5. This formula, however, 
provides a satisfactory approximation only when the Strouhal number (in terms of displacement 
thickness) fal ls approximately between '12 and 5. Two frequency spectral models have been 
discussed: one is Chase' s  model shown in Eq. (30) and the other is Witting' s model shown in Eq. 
(34). 

In an investigation of the vibration response of spacecraft shrouds to in-fl ight fluctuating 
pressures, Cockburn and Robertson ( 1974) util ized the fol lowing semi-empirical equation for the 
frequency spectrum of wall pressures beneath a homogeneous and attached boundary layer at 
transonic and supersonic speeds: 
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where q_ is the local free stream dynamic pressure, P2 == [0.0061( 1 + 0. 1 4M 2)q .. ]2 is the mean 
square fluctuating pressure , M is the local Mach number, and /0 is the characteristic frequency: 
fo = 0.346U .. I t5 .  The Cockburn and Robertson frequency spectrum represents the frequency 
distribution of the mean square pressure as a function of the characteristic frequency, which is 
characterized by only the outer variables, U .. and 8 .  

Smol' yakov and Tkachenko ( 199 1) a lso provided their empirical frequency spectrum expressed 
in terms of both inner and outer variables: 

( 54) 

where, in the case on a flat plate ,  the wal l  shear stress and boundary thickness can calculated 

approximately by r.., = 0.029 pU� (-v-Jt 's , <5 = 0.37 ,(_v_Jtts , L is the linear length from 
U .. L ll u .. L 

the leading edge, and in water, 8. == 8 I 8 .  

Recently, Smol ' yakov ( 2000), developed a simple method for calculating the TBL wal l  pressure 
spectra based on the source mechanisms that generate wavenumber spectrum caused by the 
interactions between turbulence and the mean shear, i .e . , 

( 55) 

This is a special case of Eq ( 29), since here the spatia l  Fourier transform is only applied to the 
ve locity fluctuation normal to the wal l  in the plane y=constant. U is the average ve locity in the 
boundary layer at a distance y from the wal l .  From this, the wavenumber-frequency transform of 
the wall pressure is consequently, 

( 56) 

where G( k1 ,k3,m, y) = f( y)( k12 + /32ki)exp{ -ai [ lkl + lk1 1 ( /3  -1)] } is a generalized wavenumber
frequency function of the pressure source function located at a distance y from the wal l .  This 
source function is therefore characterized by: ( 1) an asymmetry coefficient, f3 (== 6.45) ;  ( 2) a 
dimensionless coefficient, a ( == 1 1  tr) , that determines the rate of decrease of the spectrum; (3) 

the eddy length scale ,  f = (u1u
2
t2 l( dU I dy) , where (u1u

2
) is the correlation of the longitudinal 

and the transverse components of the turbulent ve locity fluctuations at a distance y from the wal l ;  
and ( 4) a function of position ,  f( y) == Kfs , where K == (u1u2

t2 is the characteristic value of the 
turbulent velocity fluctuations. For the mean shear term, two separate expressions are used in the 
inner and outer regions of the boundary layer. In the inner wal l  region ( the constant stress 
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region): dU I dy = u? l(v + £) , where £ is the eddy viscosity. In the outer region which occupies 

85-87% of the boundary layer thickness: dU I dy = (u? I £)exp[ -2.5(y I bY] , where the eddy 

viscosity can be assumed to be a constant value. 

With the generalized wavenumber-frequency source function and the mean shear terms given 
above, Smol 'yakov computed the point frequency spectrum by evaluating the integral, from y=O 
to y ---t oo ,  and over the entire wavevector plane, i .e., 

He also analyzed a diverse group of data reported in the literature with inner or outer variable 
scaling. As expected, outer variable scaled data collapse together at low frequencies but scattered 
at higher frequencies according to the increase of Reynolds number, R8( = U 008 I v) , where 8 is 

the momentum thickness. This observation was confirmed by his computed spectra. The inner 
variable scaled data are also collapsed at high frequencies, as expected. He further observed that 
in the intermediate frequencies, the peaks of the spectral curves are a smooth function of R8 • 
Smol 'yakov then argued for the requirement of different scaling for different frequencies and 
Reynolds numbers. Four distinctive characteristic frequency ranges, determined by 
dimensionless frequency, w = mv I u. , are distinguished for R8>1000: 

rpP (m) = 1 .49 x 10-5 R;·74W2 (1 - 0. 1 17 R�·44w1 12 )[u? 1(-r!v)] 
when w < W0 

rpp (m) = 2.75w-u 1 { 1 - 0.82exp[ -0.5 l(wl W0 - 1)] } [u? 1(-r!v)] 
when W0 < fij < 0.2 

(58) 

rpP (m) = (38.9e-s.Jsw + l 8 .6e-J.ssw + 0.3 1e-2' 14w ) { l - 0.82exp[ -0.5 l(wl W0 - 1)] } [u? 1(-r!v)] 
when w > 0.2 

where the peak frequency occurs when fij = W0 = 49.35R;o.ss . In the low frequency region, 

w < W0 and the pressure spectrum is proprtional to m2 • In the mid frequency region, where w is 

near W0 , is the peak region. In the "universal" range, W0 < w < 0.2 , and rpP (m) oc m-1 • In this 

range, however, Smol 'yakov's  expression shows the spectrum to be proportional to m-1 . 1 1  to 
account for the non perfect frozen pattern of the flow and the dependency of Uc on wavenumber. 
In the high frequency region, w > 0.2 , rpP (m) varies from oc w-u 1  to oc w-5 . 

Most recently, Goody (2002) presents an empirical model based on the experimental surface 
pressure spectra measured by seven research groups. His empirical model is based on the 
ratio (RT) of the outer boundary layer time scale ( t5 I U 00 )  to the inner boundary layer time 

43 



scale ( vI u? ). The effect of Reynolds number is incorporated through the time scale ratio. The 

final form of this empirical model is 

3(wu�J2 �(w) u.. -
[ ( ��]'" + 0.5 r + [ c, ( ��JJ 

(59) 

where C, = l . IR,._,,.,, ,  R, = ( "�0)J!f , and where C1 is the friction coefficient. 

This model compares well with experimental data over a large range of Reynolds numbers, 
1400< R8 <23400. Goody indicated that this model can be confidently extrapolated to higher 

Reynolds number of flows since the scaling behavior of the model strictly fol lows to the high 
frequency Reynolds number independent inner-layer scaling. 

At this point, it is helpful to compare how the various frequency spectral models differ in the 
prediction of the wall pressure. In Fig. 15 (a), the point spectrum is predicted based on the 
fol lowing assumptions: U _ = 2 1 .34 m I s ,  L (from the leading edge)=0.45 m. This is the flow 

speed and one of the flush phone location in the Haddle and Skudrzyk ( 1 969) experiments. The 
wall shear stress and boundary thickness are calculated approximately by the flat plate formula: 

Tw = 0.029pU� (-V
-J l i S

' 
� = 0.37 T (_v_J IIS , 6. = 61 8  and 8 = 0. 16 .  

U.L �U.L 
In Fig. 1 5  (b), the point spectrum is predicted based on a slower speed, U. = 1 3  ml s ,  and a point 

much further down stream, L=9.45 m. Due to close proximity to the leading edge where the 
boundary layer is thinner, the peak frequency in Fig. 15 (a) occurs approximately at 2 kHz while 
the chracteristic freuency, fa , predicted from Cockbum-Robertson formulus is about 1 kHz. The 

highest frequencies shown in the figure are sti l l  within the "universal" range. Down stream 
where the boundary layer is thick, the peak frequency, as shown in Fig. 15 (b), occurs below 100 
Hz (fa =48.5 Hz, from Cockburn-Robertson). Only the universal and higher frequency ranges 

defined by Smol' yakov are now displayed in the figure. The peak frequencies predicted by the 
Chase (Eq. 30), Witting (Eq. 34), and Smol ' yakov (Eq. 58) formula are in good agreement. 
Goody's  peak frequency occurs at slightly lower frequency. Both the Cockbum-Robertson (Eq. 
53) and Smol 'yakov-Tkachenko (Eq. 54) spectra, however, do not display spectral peaks near 
their corresponding characteristic frequencies. The Cockburn-Robertson spectrum was intended 
for vehicles at transonic and supersonic speeds and it may not be applicable for the lower speed 
ground or marine vehicles. 

The spectra calculated using Chase, Goody and Smol 'yakov expressions are within 5 dB of each 
other, exept at very low frequencies and at frequncies beyong the universal range, liJ > 0.2 . It is 
noted that the high frequency behavior of Chase' s  spectrum is such that (JP (w) oc w-• as OJ --7 oo ,  
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which may not be accurate at frequencies beyond the universal range. The spectra calculated 
using Witting, Cockburn-Robertson and Smol ' yakov-Tkachenko expressions deviate 
substantial ly from that calculated from Chase, Goody and Smol ' yakov' s  expressions. A more 
thorough evaluation of the frequency spectral models will be given later in Section 4. As will be 
shown later, Smol 'yakov (2000) and Goody (2002) models appear to be more accurate. 
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Figure 15 .  Wall Pressure Frequency Spectra Calculated from Chase ( 1 987), Witting 
( 1986), Smol ' yakov and Tkachenko ( 199 1 ,  labeled S & T), Smol ' yakov 
(2000), Goody (2002) and Cockburn-Robertson ( 1 974, labeled C & R) Models 

4.0 EXPERIMENTAL VERIFICATION OF THE MODELS 

A historical and theoretical overview has been given of the detai led features of various models of 
the turbulent boundary layer wall pressure wavevector-frequency spectra and the corresponding 
cross-spectral density functions. A model most suitable for underwater applications must be 
selected. However, the available measured underwater data are quite l imited. Wall pressure 
spectral data exists from a 0.2 inch (5 mm) diameter hydrophone located 0.45 meter from the 
bow of a buoyancy test vehicle (BTV) at 2 1 .34 m/s flow speed (Abarbanel , Katz, and Cembrola, 
1994). Further down stream, about 9.45 meter from the bow, wall pressure data exists from a 
1/10 inch (2.54 mrn) diameter hydrophone mounted on a large scale buoyancy test model at 1 3  
m/s flow speed. These data provide an opportunity to assess the current capability of predicting 
the wall pressure frequency spectra at very thin (the former) and very thick (the latter) boundary 
layer thicknesses. The latter set of data was obtained from a flush mounted sensor designed to 
monitor the TBL characteristics in a conformal array experiment reported by Sherman, Ko, and 
Buehler ( 1990). 

Validating the wavevector-frequency spectrum requires measurements by larger hydrophones, 
arrays of hydrophone, or flow-induced vibrations of underwater structures. The array data 
reported by Sherman, Ko, and Buehler ( 1 990) are limited only up to a few hundred Hz, not high 
enough for useful verification. Flow noise measurements by Haddle and Skudrzyk ( 1 969) used 
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various shapes of hydrophone with diameters up to two inches mounted on the surface of a metal 
buoyant unit ( 1 9  inch diameter, 1 2  feet 5 inch long, 114 inch thick aluminum shell) .  Pressure 
sensors were mounted at two locations: 1 7  inch from and bow, and 142 inch from the bow. This 
provides a broad range of boundary layer thickness and Strouhal number due to the wide range 
of frequencies reported ( 160 Hz to 40 kHz). The l -inch diameter hydrophone data are the most 
consistent with the expected dependency in frequency and boundary layer thickness (or Strouhal 
number). 

The wall pressure spectrum measured by a finite size circular pressure sensor, f/JM (m) , with 

uniform pressure sensitivity can be calculated when the wavevector-frequency spectrum and the 
wavenumber response function, H(kl ' k3 ) , are given (Ffowcs Williams, 1982; Capone and 

Lauchle, 1995): 

(60) 

where H(kpk) = [ 211 (�k12 + kJa)/ �k12 + kJa r ,  and a is the radius of the pressure sensor. The 

wavenumber response function, H(kl ' k3 ) , has uniform wavenumber sensitivity when the 

diameter is near zero. When the sensor diameter is large, it becomes essentially  a low-pass 
wavenumber filter. Fig. 1 6  shows the calculated H(k. ,O) for 1110-inch and l -inch circular 

transducers at 100 Hz, 1000 Hz and 10,000 Hz, plotted as a function of k1 I kc assuming U _ =15 

m/s. I t  is shown that in a l -inch diameter sensor, the convective ridge excitations will be 
effectively fi ltered out. Fig. 17  shows the product, <I> P (k1 ,O,m)H(k1 , 0) , where the integrated sum 

will be the sensor measured frequency spectral density. It is also shown that at 10  kHz, the per 
wavenumber contributions by the convective ridge to the 1 inch phone pressure are about 15 dB 
lower than that contributed by the low wavenumber region, indicating a significant low 
wavenumber contributions at high frequencies for a large sensor. At very low frequency, e.g., 
100 Hz, there is no fi ltering effect for both 1/10-inch and l -inch sensor. 
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According to Eqs. (22) and (60), The ratio of the measured pressure by a finite sensor and the 
point pressure, ¢M (OJ) I ¢P (OJ) , can be calculated as fol lows: 

(61 )  

where f(k1 , k3 )  i s  the normalized dimensionless spectrum, and ¢M (OJ) / ¢P (OJ) i s  the so cal led 

Corcos attenuation factor. The point frequency ¢/OJ) is contributed by all wavenumbers without 

attenuation. Due the increase of attenuation at a given wavenumber increases with frequency, the 
major contributions to ¢M (OJ) will be shifted to lower wavenumbers as frequency is increased. 

Using Eq. (60), the contributions to ¢M (OJ) I ¢/OJ) by three sub-regions: ( 1 )  the wavenumber 

spectrum in the acoustic domain where lkl :::;; OJ! c ,  (2) the low wavenumber region where 

wl c < lk1 1 < kc I 4 ,  -oo < lk3 l  < oo ,  (3) the subconvective and ridge regions where 

OJ I c < lk1 1 < kc I 4 , -oo < lk3 1  < oo , and the entire wavenumber range, where -oo < lk1 1 < oo , 

-oo < lk3 1 < oo are computed. 

Fig. ( 1 8a) compares the overal l ¢M (OJ) / ¢P (OJ) calculated from the Corcos, Modified Corcos, and 

the Combined Chase spectra for the one-inch diameter circular phone located 1 7  inches from the 
bow with a flow speed of 2 1 .6 rn/s. Figs. ( 1 8b), ( 1 8c) and ( 1 8d), on the other hand, show the 
relative contributions by the three regions calculated from the Corcos, Modified Corcos, and the 
Combined Chase spectra, respectively. This shows that due to the much higher low wavenumber 
spectrum, the value ¢M (OJ) !  ¢P (OJ) predicted by the Corcos spectrum is much higher than that 

predicted by the Modified Corcos and the Combined Chase spectra. As it is shown in Fig. 18b, 
the low wavenumber region becomes dominant source above 2 kHz when the Corcos spectrum is 
used. However, when the Modified Corcos and the Combined Chase spectra are used, the 
excitations are sti l l  dominated by the convective ridge region up to approximately 5,000 Hz. 
Above 5,000 Hz, the low wavenumber region is then the predominant source, and above 10 kHz, 
both the low wavenumber and acoustic regions are equal l ikely the predominant source. There is 
no noticeable differences in the values of ¢M (OJ) I ¢P (OJ) predicted by the Modified Corcos and 

the Combined Chase spectra. The reasons for this are: ( 1 )  At low and mid frequencies, the 
excitation is dominated by the convective ridge and the subconvective region (the higher 
wavenumber portion of the low wavenumber region), where there is l ittle difference between the 
two spectra. The differences occur at lower wavenumbers (including the acoustic regions) which 
are not the dominant source at low and mid frequencies, (2) At higher frequencies, the Combined 
Chase non acoustic low wavenumber spectra are close to that of the Modified Corcos spectra 
(see Fig. 14), and (3) In the entire frequency range shown, the acoustic region has no dominant 
influence in the excitation due the l imitation of the sensor area. The differences may only be 
realizable when predictions are made for a large array of sensors or a large structure. 
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Figure 1 8 . Comparison of f/JM ((JJ) /  f/JP ((JJ) Calculated from the Corcos, Modified Corcos, 

and the Combined Chase Spectra. 

Calculations of the ratio between the hydrophone measured pressure and the theoretical point 

pressure, y((JJ) [ = f/JM ((JJ) I f/JP ((JJ)] for the various models of f(k1 , k3 ) have been discussed 

above. This ratio is  independent of which point spectral model is used. The calculated pressure 
spectrum measured by a finite size sensor is obviously 

(62) 

which will then depend on which point frequency, ¢/(JJ) ,  spectral model in used. For the 

purpose of comparing the performance of the various point frequency spectral models, the 
Modified Corcos spectrum is used for calculating y((JJ) due to its simplicity. The other reason is 
because there is no difference between using the Combined Chase or the Modified Corcos 
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spectra for hydrophones up to 1 inch in diameter. Figs. 19 and 20 show the calculated results 
using four different point frequency spectral models (Chase, Goody, Smol 'yakov-Tkachenko, 
and Smol ' yakov models). Predicted values are shown in solid lines while the corresponding data 
are shown in dotted lines. The Smol ' yakov-Tkachenko model results are labeled "S & T". Fig. 
19 shows the results for two upstream sensors: one is the 0.2 inch BTV senor located at 0.45 
meter from the bow at 2 1 .3 m/s flow speed, the other is the 1 inch Haddle and Skudrzyk sensor 
located at 0.43 meter from the bow at 2 1 .6 m/s flow speed. Predicted trends by all models are 
consistent with the data. However, the most recently published models by Smol ' yakov (2000) 
and Goody provide a slightly better overal l agreement with data. Fig. 20 shows the results for 
two downstream sensors: one is the 0. 1 inch senor located at 9.45 meter from the bow of a large 
scale buoyant unit at 1 3  m/s flow speed, the other is the 1 inch Haddle and Skudrzyk sensor 
located at 3.6 meter from the bow at 2 1 .6 m/s flow speed. Predicted trends by all models are also 
consistent with the data. Again, the most recently published models by Smol ' yakov (2000) and 
Goody (2002) provide the better overall agreement with data. 
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Figure 19. Predicted and Measured results for the 0.2 inch BTV senor located at 0.45 meter 
from the bow at 2 1 .3 m/s flow speed and the 1 inch Haddle and Skudrzyk sensor 
located at 0.43 meter from the bow at 2 1 .6 m/s flow speed. 
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Figure 20. Predicted and Measured Results for the 0. 1 inch Senor Located at 9.45 Meter 
from the Bow in a Large Scale Buoyant Unit at 2 1 .3 m/s Flow Speed and the 
1 inch Haddle and Skudrzyk Sensor Located at 3.6 Meter from the Bow at 
2 1 .6 m/s Flow Speed. 

Predicted values are generally lower than that measured at larger Strouhal numbers. In the 
upstream sensors, predicted values become lower beginning around 4000 Hz while the down 
stream sensors beginning around 400 Hz. It is suspected that hull vibrations may contribute to 
the measured pressure by the hull mounted sensors. Based on plate theory, the spatial mean 
velocity response of an infinite plate ¢v (w) can be determined if the wavevector-frequency 

spectrum is given, i .e. , 

7r2(J)2 
¢v (w) :::: 2 6 <I> P (kl ' k3w), 

2D kpTJ 
(63) 

where kp is the plate bending wavenumber, and D = Eh 2 /[1 2(1 - v 2)pJ . The vibration induced 

pressure spectrum, ¢ (w) is then approximately, p.v 

5 1  



(64) 

When the vibration induced pressure is added, the ratio between the measured pressure by a 
finite sensor and the point pressure, f/JM (w) I f/JP (W) , is then calculated as fol lows: 

Fig. 21 shows the results for the upstream (x= l7" or 0.45 m) and downstream (x= l42" or 3.6 m) 
sensors (both l -inch diameter) in the Haddle-Skudrzyk experiments. The curves labeled, 
"HYDRODYNAMIC" are the predicted pressures contributed by TBL pressures; the curves 
labeled, "VIB-Chase87" and "VIB-Corcos" are the predicted ¢p./W) I ¢P (w) values using the 

Chase- 1987 and the Modified Corcos spectra, respectively. This  analysis indicates that above 4 
kHz the vibration induced noise may be significant in the Haddle-Skudrzyk experiments, and 
predicted noise will be closer to that measured when the vibration caused noise is included. 
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Figure 2 1 .  Predicted ¢M (w) l  f/JP (w) contributed by TBL Pressures and hull Vibrations 

Figs. 22 shows the calculated results with the vibration induced pressures included for both the 
upstream and down stream sensors, using the normalized Modified Corcos wavevector spectrum 
and Smol 'yakov's point frequency spectrum. Again, the upstream sensors are the 0.2 inch BTV 
senor located at 0.45 meter from the bow at 2 1 .3 rn/s flow speed and the 1 inch Haddle and 
Skudrzyk sensor located at 0.43 meter from the bow at 2 1 .6 rn/s flow speed; the downstream 
sensors are the 0. 1 inch senor located at 9 .45 meter from the bow of a large scale buoyant unit at 
1 3  rn/s flow speed, the other is the 1 inch Haddle and Skudrzyk sensor located at 3 .6 meter from 
the bow at 2 1 .6 rn/s flow speed. Due to the predominant contributions by the convective 
pressures in the small sensors, such as the 0. 1 inch and the 0.2 inch hydrophones, adding 
vibration caused pressures does not affect the predicted ¢M (w) at these sensors. However, with 
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the vibration caused pressures included, the agreement between the predicted and measured 
values are much improved for the larger sensors, such as the 1 inch hydrophones. 
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Figure 22. Predicted and Measured results for four Different Sensors at Different 
Locations of Buoyancy Propel led Vehicles when the Vibration Caused 
Pressures are Added 

5.0 CONCLUDING REMARKS AND FUTURE WORK 

A thorough examination of the theories, data, and empirical models of the wavevector-frequency 
spectrum as wel l as the cross-spectrum of the turbulent boundary layer wal l pressures and shear 
stresses has been conducted for the purpose of seeking suitable structural forcing functions. The 
study indicates it is not possible to obtain a proper cross-spectral density function to serve as a 
structural loading function from experimental two-point correlation measurements. Determining 
the low wavenumber pressures must rely on the measured responses of a structural system or an 
array of pressure sensors subjected to TBL excitations. The cross-spectrum can be subsequently 
obtained from the inverse Fourier transform of the wavevector-frequency spectrum. Various 
models of wavevector-frequency spectrum have been investigated and compared with 
experimental data. Recent publications by Chase ( 199 1 ,  1993) and Dowling ( 1998) demonstrate 
the near wall viscous shear stress contributions to the low wavenumber pressures should be 
included. Judging from the consistency with theories and data, Chase's  1987 inviscid flow 
spectrum is the most theoretical ly rigorous model. By combining this model with Chase's  1993 
semi-empirical shear stress model, a so called "Combined Chase Spectrum" is developed and 
presented as the most comprehensive model for underwater applications. A point frequency 
spectra assessment suggested the most recently published models by Smol ' yakov (2000) and 
Goody (2002) are the most accurate. 

A verification analysis indicated there is little distinction between using the Modified Corcos 
spectrum and the Combined Chase spectrum for pressure sensor sizes up to one inch and 
frequencies as high as 20 kHz. The reasons for this are: ( 1 )  At low and mid frequencies, the 
excitation is dominated by the convective ridge and the subconvective region (the higher 
wavenumber portion of the low wavenumber region), where there is little difference between the 
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two spectra. The differences occur at lower wavenumbers (including the acoustic region) which 
are not the dominant source at low and mid frequencies, (2) At higher frequencies, the Combined 
Chase non acoustic low wavenumber spectra are close to that of the Modified Corcos spectra 
(see Fig. 14), and (3) In the frequency range reported, the acoustic region has no dominant 
influence in the excitation due to the limitation of the sensor area. The differences may only be 
realizable when predictions are made for a large array of sensors or a large structure. Using 
Smol' yakov' s  (2000) point frequency model in conjunction with the normalized Modified 
Corcos wavevector-frequency spectrum (normalized by ¢/m)(Uc I m)2 ), pressure spectra are 

predicted with reasonable accuracy up to 20 kHz measured by hydrophones from 0. 1 -inch to l 
inch diameter flush mounted on various buoyancy propel led vehicles. This prediction involves 
the whole range of wavenumbers since in a larger hydrophone, such as the l -inch phone at 42 
knots, the excitations are dominated by the low-wavenumber wall pressures above 5 kHz. For 
analysis using finite-element structural models, the Modified Corcos cross-spectral density 
function is recommended due to its simplicity and applicability to a broad range of wavenumbers 
and frequencies. Nonetheless, both the wavevector-frequency spectral and cross-spectral density 
models will be continuously updated and improved as new data becomes available. 

The spectral models presented in this report are applicable to low-speed equilibrium flows, and 
are mostly semi-empirical models evolved from the physical understandings acquired from the 
classical analyses in fluid dynamics and acoustics. Computational fluid dynamics is an emerging 
field for the calculation of turbulent flows. Direct numerical simulation (DNS; e.g., Hansen, 
Handler, Leighton, and Orszag, 1987; Choi and Moin, 1990), large eddy simulation (LES; e.g., 
Hughes, Mazzei, and Oberai , 200 1 ), or a hybrid of RANS (Reynolds-Averaged Navier-Strokes) 
and LES modeling technique (e.g., Peltier, Zajaczkowski, and Wyngaard, 2000) have been used 
with success, particularly at low Reynolds numbers. A thorough review on the progress and 
accomplishment in this field may help to gain further understanding to resolve some of the 
modeling issues on TBL wall pressures. In non-equi librium flows, the effects of pressure 
gradients (e.g., Schloemer, 1967, Cipolla and Keith, 2000) and the l aminar-turbulent transitions 
(e.g., Josserand and Lauchle, 1990; Marboe, 2000; Snarski, 2000) are important. These effects 
are not well understood, and are not covered in this study. A similar analysis shown in this report 
may prove to be fruitful to provide a useful modeling guideline to predict these effects. 
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